首页> 外文会议>IEA international workshop on beryllium technology for fusion >Response of Beryllium to Severe Thermal Shocks -simulation of Disruption and Vertical Displacement Events in Future Thermonuclear Devices
【24h】

Response of Beryllium to Severe Thermal Shocks -simulation of Disruption and Vertical Displacement Events in Future Thermonuclear Devices

机译:铍对强烈热冲击的响应-未来热核装置中破裂和垂直位移事件的模拟

获取原文

摘要

Beryllium will play an important role for plasma facing components in next step thermonuclear fusion devices such as ITER. In particular for the first wall beryllium will be used with an armor thickness of several millimeters. During normal plasma operation these components are subjected to quasi-stationary, cyclic heat loads; however, during plasma instabilities they also will experience severe thermal shocks. Here plasma disruptions with deposited energy densities of several ten MJm~-2 are the most essential damaging mechanism. However, a signifant fraction of the incident energy will be absorbed by a dense cloud of ablation vapor, hence reducing the effective energy density at the beryllium surface to values in the order of 10 MJm~-2. Even under these conditions which occur on a millisecond time scale severe melting of the plasma facing material to a depth of several hundreds of microns occurs. Splashing of liquid Be-droplets and the complete removal of the melt layer due to electromagnetic forces during the plasma disruption will result in an enhanced erosion. Beside material losses, the formation of cracks i nthe recrystallized zone and in the base material will have strong impact on the integrity of the beryllium tiles, in particular during the cool down phase. Plasma instabilities on a much longer time scale, i.e. with a duration of 0.3 to 1.0 s have to be anticipated. These so-called vertical displacement events (VDE) result in deposited energy densitites of approx. 60 MJm~-2. In contrast to the rather short disruption events beside surface effects also material damage to the joining zone has to be considered.
机译:铍对于下一步热核聚变设备(如ITER)中面向等离子体的成分将发挥重要作用。特别是对于第一壁,将使用厚度为几毫米的铍。在正常的等离子运行过程中,这些组件承受准静态的循环热负荷。但是,在等离子体不稳定期间,它们也会遭受严重的热冲击。在此,具有十兆焦耳〜-2的沉积能量密度的等离子体破坏是最重要的破坏机制。但是,入射能量的很大一部分将被浓密的烧蚀蒸汽云吸收,从而将铍表面的有效能量密度降低到10 MJm〜-2量级。即使在毫秒级的这些条件下,也会发生面向等离子体的材料的严重熔化,熔化到数百微米的深度。在等离子体破坏过程中,由于电磁力的作用,Be液滴的飞溅和熔体层的完全去除将导致腐蚀加剧。除了材料损失外,在再结晶区和基材中形成裂纹将对铍砖的完整性产生强烈影响,尤其是在冷却阶段。必须预期在更长的时间范围内,即持续时间为0.3到1.0 s时,等离子体的不稳定性。这些所谓的垂直位移事件(VDE)导致沉积的能量密度大约为。 60 MJm〜-2。与除了表面效应之外的相当短的破坏事件相反,还必须考虑对连接区域的物质损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号