首页> 外文会议>ACM/IEEE conference on Supercomputing >Massively parallel simulations of diffusion in dense polymeric structures
【24h】

Massively parallel simulations of diffusion in dense polymeric structures

机译:致密聚合物结构中扩散的大规模并行模拟

获取原文

摘要

An original computational technique to generate close-to-equilibrium dense polymeric structures is proposed. Diffusion of small gases are studied on the equilibrated structures using massively parallel molecular dynamics simulations running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon (1840 processors). Compared to the current state-of-the-art equilibration methods this new technique appears to be faster by some orders of magnitude. The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics simulations. The technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit in the center of a regular tetrahedron and that regular tetrahedrons can be used to mesh the three-dimensional space. Thus, the problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete problem where solutions are approximated by simple algorithms. Practical modeling applications include the construction of butyl rubber and ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as sealing joints in many manufactured objects. Diffusion coefficients of small gases have been measured experimentally on both polymeric systems, and in general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In order to better understand the diffusion phenomena, 10,000 atoms models were generated and equilibrated for butyl and EPDM. The models were submitted to a massively parallel molecular dynamics simulation to monitor the trajectories of the diffusing species. The massively parallel molecular dynamics code used in this paper achieves parallelism by a spatial-decomposition of the workload which enables it to run large problems in a scalable way where both memory cost and per-timestep execution speed scale linearly with the number of atoms beingsimulated. It runs efficiently on several parallel platforms, including the Intel Teraflops at Sandia. There are several diffusion modes observed depending if the diffusion is probed at short time scale (anomalous mode) or long time scale (normal mode). Ultimately, the diffusion coefficient that need to be compared with experimental data corresponds to the normal mode. The dynamics trajectories obtained with butyl and EPDM demonstrated that the normal mode was reached for diffusion within one nanosecond of simulation. In agreement with experimental evidences, the oxygen and water diffusion coefficients were found larger for EPDM than butyl.
机译:提出了一种生成接近平衡的致密聚合物结构的原始计算技术。使用在Intel Teraflops(9216 Pentium Pro处理器)和Intel Paragon(1840处理器)上运行的大规模并行分子动力学模拟,研究了平衡结构上小气体的扩散。与当前最先进的平衡方法相比,这项新技术似乎要快几个数量级。该技术的主要优点是可以规避配置空间中阻碍分子动力学模拟松弛的瓶颈。该技术基于以下事实:四价原子(例如碳和硅)适合于规则四面体的中心,并且规则四面体可用于划分三维空间。因此,由分子动力学中的连续方程式描述的聚合物平衡问题被简化为离散问题,在该问题中,可通过简单算法来近似求解。实际的建模应用包括用于氧气和水扩散计算的丁基橡胶模型和乙烯-丙烯-二聚体单体(EPDM)模型的构建。丁基和EPDM用于O形圈系统中,并在许多制造对象中用作密封接头。在两种聚合物体系上均已通过实验测量了小气体的扩散系数,通常,EPDM中的扩散系数要比丁基橡胶中的扩散系数大一个数量级。为了更好地理解扩散现象,生成了10,000个原子模型,并针对丁基和EPDM进行了平衡。将模型提交给大规模并行的分子动力学模拟,以监测扩散物种的轨迹。本文中使用的大规模并行分子动力学代码通过对工作负载进行空间分解来实现并行性,从而使其能够以可扩展的方式运行较大的问题,其中内存成本和每步执行速度都与模拟的原子数成线性比例。它可以在多个并行平台上高效运行,包括Sandia的Intel Teraflops。根据是在短时间范围(异常模式)还是长时间范围(正常模式)探测扩散,观察到了几种扩散模式。最终,需要与实验数据进行比较的扩散系数对应于正常模式。用丁基和EPDM获得的动力学轨迹表明,在模拟的一纳秒内就达到了正常扩散模式。与实验证据一致,发现三元乙丙橡胶的氧和水扩散系数大于丁基。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号