首页> 外文会议>Intersociety energy conversion engineering conference;IECEC >HYBRID ELECTRICAL POWER SOURCE FOR THRUST VECTOR CONTROL ELECTROMECHANICAL ACTUATION
【24h】

HYBRID ELECTRICAL POWER SOURCE FOR THRUST VECTOR CONTROL ELECTROMECHANICAL ACTUATION

机译:推力矢量控制机电驱动的混合电源

获取原文

摘要

Existing launch vehicles utilize hydraulic systems for thrust vector control (TVC) gimbaling of engines and aerosurface control. These systems, as in the case of the Space Shuttle and its Solid Rocket Boosters (SRBs), have performed successfully in flight. They do, however, have high pre-flight operation, maintenance, and refurbishment costs. The next generation of launch vehicles propose to use electromechanical actuators (EMA's) for engine gimbaling and aerosurface control to eliminate hydraulics and its associated systems and problems.The new actuation systems are not without their own challenges, with the power source being one of the largest. The power demands for electromechanical actuation can be met by existing battery technology, however, it is done so with a significant weight penalty. An EMA's duty cycle has two components: a high power pulse to initiate and perform the actuation, and a nominal load to maintain position. Conventional batteries must be sized (Amp-hour rating) to meet the pulse power requirement while maintaining a bus voltage in range to satisfy the needs of the EMA control electronics, and therein lies the problem. Restricting the voltage sag limits the discharge rate (C rate) of the battery and therefore requires an increase in the Amp-hour rating, which relates directly to an increase in weight.An option to lower power source weight is a hybrid source consisting of a conventional battery and a capacitor bank. A hybrid source of this type would utilize the power density strengths of a capacitor bank to meet thehigh power pulse demands, and the energy density strengths of a battery to provide average power and capacitor recharging, resulting in a smaller, lighter, and more efficient power source.Testing has been performed at NASA's Marshall Space Flight Center (MSFC) with support from Auburn University's Space Power Institute to investigate the validity of the hybrid power source concept. This proof-of-concept testing used chemical double layer (CDL) capacitor technology in the form of a ≈5 farad - 270 volt capacitor bank, standard deep cycle marine lead-acid batteries, and a 25 horse power EMA developed at MSFC. The test data was used to size a flight type silver-zinc (Ag-Zn) battery to perform the same task in a battery only configuration, and also size a battery for a hybrid configuration.Test results and analysis show that a greater than 50% weight savings can be realized by utilizing this type of hybrid power source configuration with no negative effect on performance. These positive results support the need for further development in the area of CDL capacitors and hybrid configurations to meet the needs of the next generation launch vehicles' electromechanical actuators.
机译:现有的运载火箭利用液压系统来进行发动机的推力矢量控制(TVC)云台调节和地面控制。这些系统,例如航天飞机及其固体火箭助推器(SRB),在飞行中均已成功运行。但是,它们确实具有较高的飞行前运行,维护和翻新成本。下一代运载火箭建议使用机电致动器(EMA's)进行发动机万向节和飞机表面控制,以消除液压系统及其相关系统和问题。 新的致动系统并非没有挑战,动力源是最大的动力源之一。机电驱动的功率需求可以通过现有的电池技术来满足,但是这样做会带来很大的重量损失。 EMA的占空比有两个组成部分:用于启动和执行致动的高功率脉冲,以及用于保持位置的额定负载。常规电池的尺寸(安培小时额定值)必须满足脉冲功率要求,同时保持总线电压在一定范围内,以满足EMA控制电子设备的需求,这就是问题所在。限制电压跌落会限制电池的放电速率(C速率),因此需要增加额定安培小时数,这直接关系到重量的增加。 降低电源重量的一种选择是由常规电池和电容器组组成的混合电源。这种类型的混合电源将利用电容器组的功率密度强度来满足 高功率脉冲需求以及电池的能量密度强度以提供平均功率和电容器再充电,从而产生了更小,更轻,更高效的电源。 在奥本大学空间动力研究所的支持下,已经在NASA的马歇尔太空飞行中心(MSFC)上进行了测试,以研究混合动力概念的有效性。该概念验证测试使用了化学双层(CDL)电容器技术,其形式为≈5法拉-270伏电容器组,标准深循环船用铅酸电池和MSFC开发的25马力EMA。测试数据用于确定飞行型银锌(Ag-Zn)电池的大小,以在仅电池的配置中执行相同的任务,还用于混合电池的大小。 测试结果和分析表明,利用这种类型的混合电源配置可以实现超过50%的重量减轻,而对性能没有负面影响。这些积极的结果支持需要在CDL电容器和混合动力配置领域进行进一步开发,以满足下一代运载火箭的机电致动器的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号