首页> 外文会议>Conference on mathematics and control in smart structures >Advanced magnetostrictive finite element method (FEM) modeling development
【24h】

Advanced magnetostrictive finite element method (FEM) modeling development

机译:高级磁致伸缩有限元方法(FEM)建模开发

获取原文

摘要

Designers need advanced tools to tap the full potential of the benefits of giant magnetostrictive materials (GMMs) for advanced commercial, space, and military applications. To overcome the deficiencies in present models, a new magnetostrictive analytical formulation needs to be developed that includes the nonlinearities experienced in advanced device designs. Presented herein are a strategy and approach for developing the needed advanced tools to move magnetostrictive transducer design to much higher levels of performance and effectiveness. Advanced GMM FEM modeling capabilities are being developed by extending and combining leading edge theoretical work in nonlinear constitutive equations and ferromagnetic hysteresis. A nonlinear constitutive model for a GMMs uses a Taylor series expansion of independent variables of stress, magnetization and temperature to obtain a polynomial relation in terms of the Gibbs free energy. Phenomenological justification is used to eliminate some terms. Development of a magnetization based magnetostrictive material model at the macroscopic continuum level will be a novel advancement of the state of the art. The planned hysteresis model is derived from related work on energy-based models which considers the total magnetization as the combination of a reversible and an irreversible component. Because both the constitutive and hysteresis formulations are in terms of the same state variables, integration into a new complete magnetostrictive material description is inherently more feasible. The result will be a validated, fully coupled, 3-dimensional, nonlinear, hysteretic, dynamic thermo-electro- magneto-acousto-mechanical (TEMAM) model of magnetostrictive materials. Development of new finite elements to take advantage of the advanced modeling results is planned. The new capability will provide meaningful performance predictions, parameter sensitivity studies, trade-off studies and design optimizations, thereby enabling next-generation applications at reduced developmental cost.
机译:设计人员需要先进的工具来挖掘超磁致伸缩材料(的GMM)为先进的商业,空间和军事应用的优势充分发挥潜力。为了克服现有模式的不足之处,有待开发新的磁致伸缩解析公式的需求,其中包括先进的设备设计经历的非线性。这里呈现的发展需要的先进的工具来移动磁致伸缩传感器设计更高水平的性能和效率的策略和方法。高级GMM有限元建模能力正在通过扩展和非线性本构方程和铁结合滞后前沿理论工作发展。要的GMM的非线性构模型使用应力,磁化强度和温度的独立变量的泰勒级数展开,以获得在吉布斯自由能的项的多项式关系。现象学的理由是用来消除一些术语。在宏观水平连续基于磁化磁致伸缩材料模型的发展将是本领域的状态的新的进步。计划的滞后模型是从上基于能量的模型它参考总磁化强度为可逆的组合和不可逆的成分相关的工作的。由于组成和滞后两种制剂都是在同一个状态变量而言,集成到一个新的完整的磁致伸缩材料的描述本质上更可行。其结果将是一个有效的,完全耦合,3维,非线性,迟滞,动态热电 - 磁 - 声机械(TEMAM)磁致伸缩材料的模型。新的有限元的发展采取了先进的模拟结果的优势计划。这一新功能将提供有意义的性能预测,参数敏感性分析,权衡研究和设计优化,从而使下一代应用在降低开发成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号