首页> 外文会议>AIAA SPACE conference exposition >Build a Little, Fly a Lot: An Affordable Evolutionary Approach to Flexible Path, Lunar Surface, and Beyond
【24h】

Build a Little, Fly a Lot: An Affordable Evolutionary Approach to Flexible Path, Lunar Surface, and Beyond

机译:打造一点,多飞奔腾:一种经济的进化方法,可实现灵活的路径,月球表面及其他

获取原文

摘要

The premise examined in this paper is that of incremental development of modest pieces of infrastructure for extended human exploration, which are affordable in parallel with an active flight program. As new capabilities come online, the missions undertaken will be increasingly ambitious, moving beyond low Earth orbit to geostationary orbit, Earth-Moon libration points, and circumlunar flights. Indeed, this first tier of missions are shown to be accomplishable with the basic development of a minimally-sized human-carrying spacecraft and human-rating of existing evolved expendable launch vehicles (EELVs) for access to space. Since the nonrecurring costs dominate programs with low night rates, and costs are roughly proportional to vehicle scale, it is a basic axiom of this study that new launch vehicle development programs should not be undertaken unless no feasible alternative exists. The veracity of this assumption is demonstrated through comparative system analyses of programs with and without new launch vehicle development. This paper builds from a previous publication, which did the basic definition of a modular architecture for human space exploration. Three basic building blocks were identified: a 4900 kg crew module, a 7000 kg in-space Orbital Maneuvering Stage, and a modified OMS specialized for lunar landing, the Terminal Landing Stage. The small size of each of these elements reduces up-front nonrecurring costs, and allows the use of multiple vehicles as necessary to perform any desired mission. This paper continues the investigation of the modular architecture concept, using the baseline Constellation lunar architecture for comparison purposes. Conventional wisdom dictates that the larger number of mission elements for the modular architecture will produce an unacceptably low mission reliability, particularly for a complex mission such as lunar surface exploration. A detailed reliability analysis was performed, which demonstrated that the modular architecture easily accommodates spares in real time, resulting in an overall mission reliability which is actually higher than that for the baseline Constellation mission. This paper also refines the design reference mission for the modular architecture, as well as a revised program cost estimate incorporating more detailed cost data which has recently become available. With an aggressive annual flight manifest including four space station crew rotation missions, two lunar landings with preliminary cargo deliveries, and a "flexible path" mission in cislunar space, the steady-stage flight operations budget is estimated at approximately $3B/year, leaving the majority of the current NASA budget to support advanced research and future missions.
机译:本文研究的前提是逐步开发适度的基础设施,以进行扩展的人类探索,这与主动飞行计划同时价格可承受。随着新能力的上线,所执行的任务将越来越雄心勃勃,从低地球轨道到对地静止轨道,地月解放点和绕月飞行。的确,通过最小尺寸的载人航天器的基本开发以及对现有可演化的消耗性运载火箭(EELV)进行人类评级,事实证明,第一层飞行任务是可以完成的。由于非经常性费用在低利率的程序中占主导地位,并且费用大致与车辆规模成正比,因此,这项研究的基本原则是,除非没有可行的替代方案,否则不应进行新的运载火箭开发程序。通过对有或没有新运载火箭开发的程序进行比较系统分析,证明了这一假设的准确性。本文基于先前的出版物,该出版物对用于人类空间探索的模块化体系结构进行了基本定义。确定了三个基本组成部分:一个4900千克的乘员舱模块,一个7000千克的太空轨道机动平台,以及一个专门用于登月的改进型OMS,即终端着陆平台。这些元件中每个元件的尺寸小,可减少前期的非经常性费用,并允许根据需要使用多辆车辆来执行任何所需的任务。本文继续使用基线星座月球体系结构进行比较,以研究模块化体系结构的概念。传统观点认为,模块化体系结构中的任务元素数量过多,将导致任务可靠性降低到令人无法接受的低水平,尤其是对于复杂任务(例如月球表面探测)而言。进行了详细的可靠性分析,结果表明,模块化体系结构可轻松实时地容纳备用零件,从而使总体任务可靠性实际上高于基线星座任务的可靠性。本文还完善了模块化体系结构的设计参考任务,以及修订的计划成本估算,其中包含了最近可获得的更详细的成本数据。凭借一项激进的年度飞行舱单,包括四个空间站人员轮换任务,两次月球着陆和初步货运,以及在月球空间中执行的“灵活路径”任务,稳定阶段的飞行运营预算估计约为$ 3B /年,仅此而已NASA目前的大部分预算都用于支持高级研究和未来任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号