首页> 外文会议>International symposium on the measurement of toxic and related air pollutants >Sensing Surfaces Developed from Supercritical Fluid Polymer Processing
【24h】

Sensing Surfaces Developed from Supercritical Fluid Polymer Processing

机译:从超临界流体聚合物加工开发的传感表面

获取原文

摘要

The growing demand for polymer sensing surfaces with specific and improved properties has catalyzed the development of new methods of polymer synthesis and processing that provide control at the micro and nanometer scales. As illustrated by the microelectronics industry, the performance potential of these macromolecular surfaces will ultimately be related to the complexity and number of interconnections that can be achieved. However, existing techniques for the preparation of polymer surfaces are limited and new coating technologies are required. Rapid Expansion of Supercritical Solutions (RESS) is a spray-on deposition technique that takes advantage of the enormous solubility change that occurs in a rapidly expanding supercritical solution in order to form surfaces consisting of particles with narrow and tunable size distributions and morphologies. We have been utilizing RESS to deposit siloxane-based micro and nanoparticles onto the sensing surface of microfabricated Surface Acoustic Wave (SAW) transducers. We have shown that particle size and morphology can be controlled by adjusting RESS expansion parameters. The mechanical properties of developed surfaces are controlled through network formation using room temperature vapor phase crosslinking. The resulting miniature chemical sensor was tested upon exposure to organic vapors and exhibits sensitive, fast, reversible response.
机译:具有特异性和改善性质的聚合物感应表面的需求不断增长催化了在微型和纳米尺度提供控制的聚合物合成和加工方法的开发。如微电子工业所示,这些大分子表面的性能潜力最终与可以实现的互连的复杂性和数量有关。然而,用于制备聚合物表面的现有技术是有限的,需要新的涂层技术。超临界解决方案(RESS)的快速膨胀是一种喷涂沉积技术,其利用在快速扩增的超临界溶液中发生的巨大溶解度变化,以形成由具有窄和可调尺寸分布和形态的颗粒组成的表面。我们已经利用ress将基于硅氧烷的微型和纳米颗粒存放到微制造表面声波(锯)换能器的感测表面上。我们已经表明,可以通过调整RESS扩展参数来控制粒径和形态。通过使用室温气相交联通过网络形成来控制发育表面的机械性能。在暴露于有机蒸汽时测试所得到的微型化学传感器,并表现出敏感,快速,可逆的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号