首页> 外文会议>International Conference on Electrical, Computer and Communication Engineering >Simulation based Investigation of Inverted Planar Perovskite Solar Cell with All Metal Oxide Inorganic Transport Layers
【24h】

Simulation based Investigation of Inverted Planar Perovskite Solar Cell with All Metal Oxide Inorganic Transport Layers

机译:基于模拟基于倒立平面钙钛矿太阳能电池与所有金属氧化物无机输送层的研究

获取原文

摘要

Due to simpler fabrication process and low temperature processability beneficial for flexible and tandem structures, planar architectures (n-i-p and p-i-n) are gaining popularity in organic-inorganic lead halide perovskite solar cell (PSC) research fields. For p-i-n or inverted planar cells, mostly studied charge transport materials are organic, which suffer from poor conductivity, poor chemical stability and higher processing cost. This is leading towards growing interest of using solution processed inorganic metal oxide transport layers which can easily overcome the shortcomings of organic counterparts upto certain extent. In this work, a simple but comprehensive 1D simulation based study of inverted planar PSC is presented using all-metal oxide transport layers. Three different electron transport materials (ETM), TiO_2 (most popular for mesoscopic and n-i-p structures), ZnO and SnO_2 are comparatively studied for the same hole transport material (HTM), NiO_x in Methyl Ammonium Lead Iodide, CH_3NH_3PbI_3 based PSC structure. Detailed analysis are performed for open circuit voltage (V_(oc)), short circuit current (J_(sc)), fill factor (FF) and power conversion efficiency (PCE) considering the variation of perovskite layer thickness, bulk defect densities and ETM-perovskite interface states. It is found that, cells with ZnO show better PCE and J_(sc) for almost all situations because of having higher carrier mobility and optical absorption, whereas owing to better band alignment, SnO_2 based cells provide enhanced V_(oc), FF and more robustness to the interface state variations. Thus this work provides a thorough investigation of the interfacial layer properties on the performance of inverted planar PSC in all metal oxide inorganic transport layer environment.
机译:由于制造过程更简单,低温可加工性有利于柔性和串联结构,平面架构(N-I-P和P-I-N)在有机无机铅卤化物钙钛矿太阳能电池(PSC)研究领域的普及。对于P-I-N或倒置平面细胞,主要研究的电荷传输材料是有机的,导电性差,化学稳定性差和更高的加工成本。这导致使用溶液加工的无机金属氧化物输送层的兴趣,这可以容易地克服有机对应物的缺点,这在一定程度上可以容易地克服有机对应物的缺点。在这项工作中,使用全金属氧化物输送层提出了一种简单但全面的1D基于倒置平面PSC的研究。三种不同的电子传输材料(ETM),TiO_2(最流行的介术和N-I-P结构),ZnO和SnO_2相对较称地研究了相同的空穴传输材料(HTM),NiO_x在甲基氨基铅碘化物中的CH_3NH_3PBI_3的PSC结构。考虑到钙钛矿层厚度,散装缺陷密度和ETM的变化,对开路电压(V_(OC)),填充因子(FF)和功率转换效率(PCE)进行详细分析,填充因子(FF)和电力转换效率(PCE) -PerovSkite接口状态。结果发现,由于具有更高的载波移动性和光学吸收,具有ZnO的细胞显示出更好的PCE和J_(SC),而是由于具有更高的载波迁移率和光学吸收,而基于频带对准,基于SNO_2的单元提供增强型V_(OC),FF和更多对界面状态变化的鲁棒性。因此,该工作提供了对所有金属氧化物无机输送层环境中倒置平面PSC性能的界面层性质的彻底研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号