首页> 外文会议> >Chaotic Scattering of Energetic Electrons in Magnetospheric Radiation Belts by Whistler Waves
【24h】

Chaotic Scattering of Energetic Electrons in Magnetospheric Radiation Belts by Whistler Waves

机译:惠斯勒波对磁层辐射带中高能电子的混沌散射

获取原文

摘要

Summary form only given. In the magnetospheric radiation belts, very energetic electrons (in MeV level) trapped by the Earth''s dipole magnetic field have strong impact on passing satellites. An approach using a large amplitude whistler wave to precipitate those energetic electrons is explored. The trajectories of electrons are shown to fall in a three-dimensional phase space. Thus, a surface of section technique is used to examine graphically the chaoticity of the electron-wave system. The pitch angle time function is also plotted to verify if the electron can be scattered into the loss cone. Once the electron wanders into the loss cone, it can precipitate into the ionosphere and/or the upper atmosphere. The bouncing motion of the electron is a key factor to cause chaotic behavior in the interaction. The commencement of chaotic behavior in the electron trajectory for a given electron energy and region (i.e., a L value) requires the whistler wave to have a proper frequency and to exceed a threshold level. Moreover, the threshold requirement also depends on the initial pitch angle of the electron and the loss cone angle that varies with the L value. The dependency of the optimal wave frequency on the electron energy and L value are determined in general way through a semi-empirical relation deduced from the numerical results. The threshold condition is determined for the specific case that trapped electrons are located in Lles1.5 regions. Thus, the loss cone is about 30deg and the most proper pitch angle of the trapped electrons is about 60deg. The dependence of the threshold whistler wave field on the electron energy is determined. The results show that the threshold wave magnetic field is in the range of about 0.2% of the geomagnetic field for those energetic electrons having kinetic energies larger than 500 keV, i.e., gamma0
机译:仅提供摘要表格。在磁层辐射带中,被地球偶极子磁场捕获的高能电子(在MeV水平)对经过的卫星有强烈影响。探索了一种使用大幅度的惠斯勒波来沉淀那些高能电子的方法。电子的轨迹显示为落在三维相空间中。因此,截面技术被用于以图形方式检查电子波系统的混沌性。还绘制了俯仰角时间函数,以验证电子是否可以散射到损耗锥中。一旦电子进入损耗锥,它就会沉淀到电离层和/或高层大气中。电子的弹跳运动是在相互作用中引起混沌行为的关键因素。对于给定的电子能量和区域(即,L值),电子轨迹中的混沌行为的开始要求哨声波具有适当的频率并且超过阈值水平。此外,阈值要求还取决于电子的初始俯仰角和随L值变化的损耗锥角。最佳波频率对电子能量和L值的依赖性通常通过从数值结果推导的半经验关系来确定。对于被捕获的电子位于Lles1.5区域的特定情况,确定阈值条件。因此,损耗锥约为30度,被俘获电子的最合适的俯仰角约为60度。确定阈值惠斯勒波场对电子能量的依赖性。结果表明,对于那些动能大于500 keV,即γ 0 > 2的高能电子,阈值波磁场的范围约为地磁场的0.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号