首页> 外文会议> >Highly accurate flow measurements with thermal flow sensors using the alternating direction method
【24h】

Highly accurate flow measurements with thermal flow sensors using the alternating direction method

机译:使用交替方向法的热流量传感器进行高精度的流量测量

获取原文

摘要

We present a novel method to eliminate additive drift in silicon thermal flow sensors, the Alternating Direction method(ADM). In this sensor design the flow signal is contained in the gradient of a two-dimensional temperature distribution T(x,y) on the chip. This temperature gradient is induced by the convective heat transfer of the flowing medium, which is overall dependent on (i) the physical aspects of the flowing medium, (ii) the physical characteristics of the sensor and (iii) the thermal coupling of the sensor to its holder and environment. Ideally, the gradient in T(x,y) is a homogeneous function of (i). In real-world applications, however, the non-ideal aspects (uncertainty in the functional relationship of T(x,y) on the flow) are generally due to asymmetries in the silicon chip and its mounting, resulting in a further additive dependency of the gradient T(x,y) on (ii)-(iii). With thermal flow measurement of very low airflow velocities (0-30 cm/s), the factors (ii) and (iii) can have dramatic influence on the thermal gradient, for instance by inducing flow disturbances by the thermally induced convection. These additive dependencies contribute to unacceptable measurement errors in the low flow regime. ADM applies to vector sensors, having anisotropic sensitivity for the measurand S, and isotropic sensitivity for all other possible input signals, such as those induced by the above mentioned influences (ii) and (iii). ADM eliminates virtually all drift, providing the desired performance enhancement especially for the purpose of long term volume measurements. In this paper, the theory and possible applications of ADM are presented.
机译:我们提出了一种消除硅热流量传感器中添加剂漂移的新方法,即交替方向法(ADM)。在这种传感器设计中,流量信号包含在芯片上的二维温度分布T(x,y)的梯度中。温度梯度是由流动介质的对流传热引起的,总的来说,这取决于(i)流动介质的物理方面,(ii)传感器的物理特性和(iii)传感器的热耦合对其持有者和环境的影响。理想情况下,T(x,y)中的梯度是(i)的齐次函数。但是,在实际应用中,非理想方面(流动中T(x,y)的函数关系的不确定性)通常是由于硅芯片及其安装的不对称性造成的,进一步增加了(ii)-(iii)上的梯度T(x,y)。对于非常低的气流速度(0-30 cm / s)的热流测量,因素(ii)和(iii)会对热梯度产生巨大影响,例如,通过热感应对流引起流量扰动。这些添加剂依赖性导致在低流量状态下出现无法接受的测量误差。 ADM适用于矢量传感器,它对被测物S具有各向异性的敏感性,而对所有其他可能的输入信号,例如由上述影响(ii)和(iii)引起的输入信号,则具有各向同性的敏感性。 ADM几乎消除了所有漂移,从而提供了所需的性能增强,特别是用于长期体积测量的目的。本文介绍了ADM的理论和可能的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号