首页> 外文会议> >A fast digital filter algorithm for gamma-ray spectroscopy of double-exponential decaying scintillators
【24h】

A fast digital filter algorithm for gamma-ray spectroscopy of double-exponential decaying scintillators

机译:双指数衰减闪烁体的伽马射线光谱快速数字滤波算法

获取原文
获取外文期刊封面目录资料

摘要

Scintillators, like CsI(Na), with double-exponential decay times typically cannot be used in high-count rate applications due to their complicated pulse shapes created by the convolution of scintillator decay times and decay constant of charge integrating preamplifiers. We present here a novel digital filter algorithm which is capable of using CsI(Na) at input count rates exceeding 250 kcps and achieving good energy resolutions. We used a 1" diameter and 1" long CsI(Na) crystal, whose scintillation light can be best described by a short component with a 550 ns decay time and a long component with a 4 /spl mu/s decay time. The crystal was coupled to a 1 1/8" diameter PMT. The digital filter algorithm was implemented in XIA's all-digital Polaris spectrometer in which five running sums of each digitized scintillation pulse were captured, and the Polaris's on-board DSP read the energy sums and reconstructed the pulse height using a set of pre-computed coefficients. The algorithm was tested at different input count rates, ranging from 19 kcps to 270 kcps using a 1 mCi /sup 137/Cs source. The energy resolution (FWHM) at 662 keV was 7.0% at 19 kcps and 8.4% at 270 kcps with a filter rise time of 3.2 /spl mu/s, and increased to 10.7% and 11.7%, respectively, with a filter rise time of 1 /spl mu/s. The energy peak shifted by less than 1% over the entire input count rate range, which reflects good system linearity. Output count rates of 65.3 kcps and 17.8 kcps were obtained with filter rise time of 1 /spl mu/s and 3.2 /spl mu/s, respectively, at an input count rate of 270 kcps. This algorithm can be easily adapted to other double-exponential decaying scintillators by changing the decay times used in the energy reconstruction formula.
机译:具有双指数衰减时间的闪烁器,如CsI(Na),由于闪烁器衰减时间和电荷积分前置放大器的衰减常数的卷积而形成复杂的脉冲形状,因此通常无法在高计数率应用中使用。我们在这里提出一种新颖的数字滤波器算法,该算法能够以超过250 kcps的输入计数率使用CsI(Na)并实现良好的能量分辨率。我们使用了直径为1“且长度为1”的CsI(Na)晶体,其闪烁光最好用衰减时间为550 ns的短分量和衰减时间为4 / spl mu / s的长分量来描述。晶体与直径为1 1/8“的PMT耦合。在XIA的全数字Polaris光谱仪中实施了数字滤波算法,其中捕获了每个数字化闪烁脉冲的五个运行总和,Polaris的板载DSP读取了能量使用一组预先计算的系数求和并重建脉冲高度,并使用1 mCi / sup 137 / Cs源在19 kcps至270 kcps的不同输入计数率下对该算法进行了测试。 662 keV在19 kcps下为7.0%,在270 kcps下为8.4%,过滤器上升时间为3.2 / spl mu / s,在过滤器上升时间为1 / spl mu / s时分别增加到10.7%和11.7%。 。在整个输入计数率范围内,能量峰的位移小于1%,这反映了良好的系统线性度,滤波器上升时间分别为1 / spl mu / s和3.2 / spl时,输出计数率分别为65.3 kcps和17.8 kcps。 μ/ s,输入计数率为270 kcps,该算法很容易适应d通过更改能量重建公式中使用的衰减时间,将其转换为其他双指数衰减闪烁体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号