首页> 外文会议> >Co-option and Irreducibility in Regulatory Networks for Cellular Pattern Development
【24h】

Co-option and Irreducibility in Regulatory Networks for Cellular Pattern Development

机译:细胞模式开发的调控网络中的共选项和不可约性

获取原文

摘要

We used a computational approach to examine three questions at the intersection of developmental biology and evolution: 1) What is the space available for evolutionary exploration for genetic regulatory networks (GRNs) able to solve developmental patterning problems? 2) If different GRNs exist that can solve a particular pattern, are there differences between them that might lead to the selection of one over another? 3) What are the possibilities for co-opting GRN subcircuits or even entire GRNs evolved to solve one pattern for use in the solution of another pattern? We used a Monte Carlo strategy to search for simulated GRNs composed of nodes (proteins) and edges (regulatory interactions between proteins) capable of solving one of three striped cellular patterning problems. These GRNs were subjected to a knockout procedure akin to gene knock-outs in genetic research. Knockout was continued until all individual network components of the reduced GRN were shown to be essential for function. This GRN was termed irreducible. We found many different unique irreducible GRNs that were able to solve each patterning problem. Since any functional GRN must include an irreducible GRN as a core or subgraph, the space for evolutionary exploration of pattern-forming GRNs is large. Irreducible GRNs that solve a particular pattern differed widely in their robustness - the ability to solve a target pattern under different initial conditions. These differences may offer a target for selection to winnow out less robust GRNs from the set of GRNs found in nature. Finally, subgraph isomorphism analysis revealed great potential for co-option during evolution. Some irreducible GRNs appear in their entirety within larger GRNs that solve different patterning problems. At much higher frequency, subcycles are shared widely among irreducible GRNs, including those that solve different patterns. Irreducible GRNs may form the core elements of GRNs found in biological systems and provide insight int-o their evolution
机译:我们使用一种计算方法来检验发育生物学与进化交汇处的三个问题:1)能够解决发育模式问题的遗传调控网络(GRN)的进化探索可利用的空间是什么? 2)如果存在可以解决特定模式的不同GRN,它们之间是否存在差异,从而可能导致一个或多个的选择? 3)选择GRN子电路甚至整个GRN来解决一种模式以用于另一种模式的解决方案有哪些可能性?我们使用蒙特卡洛策略来搜索由节点(蛋白质)和边缘(蛋白质之间的调节相互作用)组成的模拟GRN,这些节点能够解决三个条纹细胞图案化问题之一。这些GRN经历了类似于基因研究中基因敲除的敲除程序。继续进行淘汰赛,直到简化的GRN的所有单个网络组件被证明对功能至关重要。该GRN被称为不可还原。我们发现了许多不同的无法还原的GRN,它们能够解决每个图案化问题。由于任何功能性GRN都必须包含不可还原的GRN作为核心或子图,因此用于模式形成GRN的进化探索空间很大。解决特定模式的不可还原GRN的鲁棒性差异很大-在不同的初始条件下解决目标模式的能力。这些差异可能为从自然界发现的GRN集合中选出功能较弱的GRN提供了选择目标。最后,子图同构分析显示了在进化过程中具有巨大的共选潜力。一些不可还原的GRN整体出现在较大的GRN中,这些GRN解决了不同的图案化问题。子周期以更高的频率被不可还原的GRN广泛共享,包括解决不同模式的GRN。不可还原的GRN可能构成生物系统中发现的GRN的核心元素,并为它们的进化提供洞察力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号