首页> 外文会议> >Hysteresis Compensation for High-Precision Positioning of a Shape Memory Alloy Actuator using Integrated Iterative-Feedforward and Feedback Inputs
【24h】

Hysteresis Compensation for High-Precision Positioning of a Shape Memory Alloy Actuator using Integrated Iterative-Feedforward and Feedback Inputs

机译:使用集成式前馈和反馈输入对形状记忆合金执行器进行高精度定位的磁滞补偿

获取原文

摘要

In this paper, we investigate the design of an iteration-based control algorithm combined with feedback control to address the positioning error caused by hysteresis effect in a shape memory alloy (SMA) actuator. SMA actuators offer relatively large strain (up to 8%) and high strength-to-weight ratio, and as a result, they are being exploited in minimally invasive surgery tools and microrobotics. But unfortunately, SMA actuators exhibit significant hysteresis effect which can lead to loss in positioning precision; it can cause as much as 50% error in positioning. To address the prohibitive effect of hysteresis, we study the application of an iterative-feedforward algorithm specifically designed to account for this behavior. We show that one of the major challenges with iterative-feedforward inputs for SMA actuators is the slope of the hysteresis curve at the phase transition zones (from martensite to austenite and vice versa) can be significantly large, and thus the output response can be highly sensitive to small changes in the input. As a result, iterative-feedforward input provides limited performance because at the transition zones, small changes in the input (due to noise, for example) cause the output to change significantly, thus inducing tracking error. To alleviate this problem, and to help improve the performance of the feedforward method, we consider the addition of a feedback input to add robustness. We show: (1) experimental results that demonstrate the efficacy of the method and (2) the tracking precision can be reduced by over ten times compared to just using iterative-feedforward input.
机译:在本文中,我们研究了基于迭代的控制算法与反馈控制相结合的设计,以解决形状记忆合金(SMA)执行器中的磁滞效应引起的定位误差。 SMA执行器具有相对较大的应变(最高8%)和较高的强度重量比,因此,它们已被用于微创手术工具和微型机器人。但是不幸的是,SMA执行器显示出明显的磁滞效应,这会导致定位精度下降。可能会导致多达50%的定位误差。为了解决磁滞的抑制作用,我们研究了专门设计用于解决此问题的迭代前馈算法的应用。我们证明了SMA执行器的迭代前馈输入的主要挑战之一是相变区(从马氏体到奥氏体,反之亦然)的磁滞曲线的斜率可能很大,因此输出响应可能非常高。对输入的细微变化敏感。结果,迭代前馈输入提供有限的性能,因为在过渡区域,输入中的细微变化(例如,由于噪声)会导致输出显着变化,从而引起跟踪误差。为了缓解此问题,并帮助改善前馈方法的性能,我们考虑添加反馈输入以增强鲁棒性。我们显示:(1)实验结果证明了该方法的有效性,(2)与仅使用迭代前馈输入相比,跟踪精度可以降低十倍以上。

著录项

  • 来源
    《 》|2007年|4246-4253|共8页
  • 会议地点
  • 作者

    Tchoupo; Guy; Leang; Kam K.;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号