首页> 外文会议> >Plasma sources for micro-thrusters
【24h】

Plasma sources for micro-thrusters

机译:微型推力器的等离子源

获取原文
获取外文期刊封面目录资料

摘要

Summary form only given. Micro-thrusters are used in spacecraft to generate thrusts ranging from sub-/spl mu/N to mN for station keeping and attitude control. Currently, pulsed plasma thrusters (PPT) and Hall effect thrusters have been used in larger spacecraft but scaling them to small thrusts presents challenges. Micro-ion engines have higher specific impulse and potentially higher thrust to power ratios and operate with noncontaminating propellants when compared with PPT systems. Inductively Coupled (ICP) sources for micro-thrusters are attractive due to their simpler designs, potentially longer service lives, and ability to achieve high ion densities. Scaling ICP sources to small dimensions is challenging due to the need to increase frequency and plasma density to obtain reasonably small skin depths. To maximize the conversion of power to thrust (through acceleration of ions using grids), the fractional ionization should be as large as possible. In this regard, plasma densities of 10/sup 10/-10/sup 11/ /cm/sup 3/ at 2 W and 2-4 Torr pressure have been achieved in ICPs sustained in argon having dimensions of a few mm. In this talk, we report on results from a 2-dimensional (2d) computational investigation of plasma sources for micro-thrusters similar to those described by Minayeva and Hopwood. The 2d model uses an unstructured mesh to resolve non-equilibrium electron, ion and neutral transport using fluid equations. Sheath accelerated beam-like electrons are resolved using a Monte Carlo simulation. A compressible Navier-Stokes module provides the bulk fluid velocities and temperatures. Power deposition is resolved by solving Maxwell's equations coupled with the electron and ion transport. Results from a parametric study of pressure ( a few to 10 Torr), power (a few Watts) and a geometry for sources with dimensions of a few mm discussed for rate gas mixtures with the goal of optimizing the ionization fraction.
机译:仅提供摘要表格。微型推力器在航天器中用于产生从sub / spl mu / N到mN的推力,用于保持位置和控制姿态。当前,脉冲等离子推进器(PPT)和霍尔效应推进器已用于较大的航天器,但将其缩放至较小的推力提出了挑战。与PPT系统相比,微离子发动机具有更高的比冲和更高的推力/功率比,并且可以与无污染的推进剂一起运行。微型推力器的电感耦合(ICP)源极具吸引力,因为它们的设计更简单,使用寿命更长,并且能够实现高离子密度。由于需要增加频率和等离子体密度以获得合理的趋肤深度,因此将ICP离子源缩放到小尺寸具有挑战性。为了最大程度地将功率转换为推力(通过使用栅格加速离子),分数电离应尽可能大。在这方面,在尺寸为几毫米的氩气中维持的ICP中,在2 W和2-4 Torr压力下已达到10 / sup 10 / -10 / sup 11 // cm / sup 3 /的等离子体密度。在本次演讲中,我们报告了二维推力(2d)对微型推力器血浆源的计算研究结果,这些推力与Minayeva和Hopwood所描述的相似。二维模型使用非结构化网格来使用流体方程式求解非平衡电子,离子和中性传输。使用蒙特卡洛模拟解析鞘层加速的束状电子。可压缩的Navier-Stokes模块可提供整体流体的速度和温度。功率沉积通过求解麦克斯韦方程以及电子和离子传输来解决。讨论了关于速率混合气体的参数(几毫米到10托),功率(几瓦)和几毫米尺寸的源几何形状的参数化研究的结果,目的是优化电离分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号