首页> 外文会议> >Analysis of long-lived isotopes in the presence of short-lived isotopes using zero dead time correction
【24h】

Analysis of long-lived isotopes in the presence of short-lived isotopes using zero dead time correction

机译:使用零死区时间校正分析存在短寿命同位素的长寿命同位素

获取原文

摘要

High Purity Germanium (HPGe) detector systems are routinely used in counting laboratories in many types of nuclear facilities such as nuclear power plants and fuel production sites. These systems generally consist of a lead-shielded HPGe detector, Multi Channel Analyzer (MCA), and analytical software. These systems are used to analyze a wide variety of sample types for many different isotopes. Analysis of certain sample types, such as those from the reactor coolant or the off-gas extraction system, in nuclear power plant radiochemistry laboratories is complicated by the presence of short-lived isotopes. With these isotopes present, the sample count rate begins at a higher value than the ending count rate with a rapid change in count rate often observed. This decaying of the sample count rate causes the true count rate of the peaks to be unknown for those MCAs that use the traditional Live Time Clock extension methods. The current method of compensating for these short-lived isotopes is simply to delay starting the acquisition until these isotopes decay (typically 45-60 minutes). This has the effect of reducing the throughput capacity of the laboratory meaning fewer samples can be counted in any given period. The use of "loss free counting" methods in radiochemistry laboratories has been unacceptable because these methods do not provide the uncertainty in the measurement which must be reported with the activity calculation from the counting laboratory. An innovative MCA with a zero dead time (ZDT/spl trade/) correction method will be presented which (1) compensates for the decaying count rate caused by the short-lived isotopes, thus eliminating the need for delaying the start time of the acquisition; and (2) calculates the uncertainty in the activity determination, thus satisfying the reporting requirements of the counting laboratory. Data from the analysis, including the uncertainty, of long-lived isotopes in reactor coolant samples both in the presence and absence of short-lived isotopes will be presented.
机译:高纯度锗(HPGe)检测器系统通常用于对许多类型的核设施(如核电厂和燃料生产基地)的实验室进行计数。这些系统通常由铅屏蔽HPGe检测器,多通道分析仪(MCA)和分析软件组成。这些系统用于分析许多不同同位素类型的样品。短寿命同位素的存在使分析某些类型的样品(例如来自反应堆冷却剂或废气提取系统的样品)在核电厂放射化学实验室中的分析变得复杂。在存在这些同位素的情况下,样品计数率开始于比结束计数率更高的值,并且经常观察到计数率的快速变化。对于使用传统实时时钟扩展方法的MCA,采样计数率的这种下降导致峰值的真实计数率未知。补偿这些短寿命同位素的当前方法只是将开始采集延迟到这些同位素衰减(通常为45至60分钟)之前。这样会降低实验室的吞吐能力,这意味着在任何给定时期内可以计数的样本数量更少。在放射化学实验室中使用“无损计数”方法一直是不可接受的,因为这些方法没有提供测量中的不确定性,必须在计数实验室的活度计算中报告该不确定性。将提出一种具有零死区时间(ZDT / spl trade /)校正方法的创新型MCA,该校正方法(1)补偿了由短寿命同位素引起的衰减计数率,从而消除了延迟采集开始时间的需要; (2)计算活动确定中的不确定性,从而满足计数实验室的报告要求。将提供来自存在和不存在短寿命同位素的反应堆冷却剂样品中长寿命同位素分析的数据,包括不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号