首页> 外文会议> >Revolutionary nanocomposite materials to enable space systems in the 21/sup st/ century
【24h】

Revolutionary nanocomposite materials to enable space systems in the 21/sup st/ century

机译:革命性的纳米复合材料,可在21世纪后世纪实现太空系统

获取原文

摘要

Current estimates for launching payloads into space orbit stand at $10,000/lb ($22,000/kg). Significant weight, and hence cost, reductions can be realized with the use of organic materials, but such materials tend to perform very poorly in the harsh space environment. Organic polymers with uniformly dispersed nanoscale inorganic precursors may enable these materials to withstand the harsh space environment and be used as critical weight-reduction materials on current and future space systems. Nanocomposites, as these types of materials are often referred to, have received much attention over the past decade as scientists search for ways to enhance the properties of engineering polymers while retaining their processing ease. Unlike traditional filled polymer systems, nanocomposites require relatively low dispersant loadings (/spl sim/2 wt%) to achieve significant property enhancements. Some of these enhancements include increased modulus, increased gas barrier, increased thermal performance, increased atomic oxygen resistance, resistance to small molecule permeation and improved ablative performance. As a result of these enhancements, nanocomposites have the potential to play a significant role in future space systems. Launch vehicles would greatly benefit from appropriately designed nanocomposites that could provide improved barrier properties and gradient morphologies enabling linerless composite cryogenic fuel tanks. Self-rigidizing, self-passivating nanocomposite materials could be used to construct space vehicle components that are both highly resistant to space-borne particles and resistant to degradation from electromagnetic radiation, while reducing the overall weight of the spacecraft. Nanocomposite materials also offer the unique opportunity for improved tailorability of physical and structural properties such as the coefficient of thermal expansion, which would be especially useful in constructing large aperture telescopes and antennas using inflatable membranes.
机译:目前估计将有效载荷送入太空轨道的成本为10,000美元/磅(22,000美元/千克)。使用有机材料可以显着降低重量,从而降低成本,但是这种材料在恶劣的太空环境中的性能往往很差。具有均匀分散的纳米级无机前体的有机聚合物可以使这些材料能够承受恶劣的太空环境,并可以用作当前和未来太空系统中重要的减重材料。在过去的十年中,纳米复合材料(通常被称为这类材料)受到了科学家的广泛关注,因为科学家们在寻找提高工程聚合物性能的同时又保持其加工简易性的方法。与传统的填充聚合物系统不同,纳米复合材料需要相对较低的分散剂负载量(/ spl sim / 2 wt%),以实现显着的性能增强。其中一些增强功能包括增加的模量,增加的阻气性,增强的热性能,增强的抗原子氧性能,抗小分子渗透性和改善的烧蚀性能。这些增强的结果是,纳米复合材料有可能在未来的空间系统中发挥重要作用。运载工具将大大受益于适当设计的纳米复合材料,该复合材料可提供改进的阻隔性能和梯度形态,从而实现无衬套复合低温燃料箱。自刚性,自钝化的纳米复合材料可用于构建航天器部件,这些部件既可高度抵抗星载颗粒,又可抵抗电磁辐射降解,同时还能降低航天器的整体重量。纳米复合材料还为改善物理和结构特性(如热膨胀系数)的可定制性提供了独特的机会,这在使用充气膜构造大口径望远镜和天线时特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号