首页> 外文会议> >A unified superfast algorithm for boundary rational tangential interpolation problems and for inversion and factorization of dense structured matrices
【24h】

A unified superfast algorithm for boundary rational tangential interpolation problems and for inversion and factorization of dense structured matrices

机译:边界有理切向插值问题以及稠密结构矩阵的反分解和分解的统一超快算法

获取原文

摘要

The classical scalar Nevanlinna-Pick interpolation problem has a long and distinguished history, appearing in a variety of applications in mathematics and electrical engineering. There is a vast literature on this problem and on its various far reaching generalizations. It is widely known that the now classical algorithm for solving this problem proposed by Nevanlinna in 1929 can be seen as a way of computing the Cholesky factorization for the corresponding Pick matrix. Moreover; the classical Nevanlinna algorithm takes advantage of the special structure of the Pick matrix to compute this triangular factorization in only O(n/sup 2/) arithmetic operations, where n is the number of interpolation points, or equivalently, the size of the Pick matrix. Since the structure-ignoring standard Cholesky algorithm [though applicable to the wider class of general matrices] has much higher complexity O(n/sup 3/), the Nevanlinna algorithm is an example of what is now called fast algorithms. In this paper we use a divide-and-conquer approach to propose a new superfast O(n log/sup 3/ n) algorithm to construct solutions for the more general boundary tangential Nevanlinna-Pick problem. This dramatic speed-up is achieved via a new divide-and-conquer algorithm for factorization of rational matrix functions; this superfast algorithm seems to have a practical and theoretical significance itself. It can be used to solve similar rational interpolation problems [e.g., the matrix Nehari problem], and a variety, of engineering problems. It can also be used for inversion and triangular factorization of matrices with displacement structure, including Hankel-like, Vandermonde-like, and Cauchy-like matrices.
机译:经典的标量Nevanlinna-Pick插值问题有着悠久而杰出的历史,出现在数学和电气工程的各种应用中。关于这个问题及其广泛影响的概括有大量文献。众所周知,Nevanlinna在1929年提出的解决该问题的经典算法可以看作是计算对应Pick矩阵的Cholesky因式分解的一种方法。而且;经典的Nevanlinna算法利用Pick矩阵的特殊结构仅在O(n / sup 2 /)个算术运算中计算此三角分解,其中n是插值点的数量,或者等效地,是Pick矩阵的大小。由于忽略结构的标准Cholesky算法[尽管适用于更广泛的通用矩阵类别]具有更高的复杂度O(n / sup 3 /),所以Nevanlinna算法是现在称为快速算法的一个示例。在本文中,我们采用分而治之的方法来提出一种新的超快速O(n log / sup 3 / n)算法,以构造更一般的边界切向Nevanlinna-Pick问题的解决方案。通过新的分而治之算法对有理矩阵函数进行因式分解,可以显着提高速度。这种超快速算法本身似乎具有实用和理论意义。它可以用于解决类似的有理插值问题(例如矩阵Nehari问题)以及各种工程问题。它还可以用于具有位移结构的矩阵的求逆和三角分解,包括Hankel型,Vandermonde型和Cauchy型矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号