首页> 外文会议>Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII >Optimizing channel selection for excitation-scanning hyperspectral imaging
【24h】

Optimizing channel selection for excitation-scanning hyperspectral imaging

机译:优化激发扫描高光谱成像的通道选择

获取原文
获取原文并翻译 | 示例

摘要

A major benefit of fluorescence microscopy is the now plentiful selection of fluorescent markers. These labelscan be chosen to serve complementary functions, such as tracking labeled subcellular molecules near demarcatedorganelles. However, with the standard 3 or 4 emission channels, multiple label detection is restricted to segregatedregions of the electromagnetic spectrum, as in RGB coloring. Hyperspectral imaging allows the user to discern manyfluorescence labels by their unique spectral properties, provided there is significant differentiation of their emissionspectra. The cost of this technique is often an increase in gain or exposure time to accommodate the signal reductionfrom separating the signal into many discrete excitation or emission channels. Recent advances in hyperspectral imaginghave allowed the acquisition of more signal in a shorter time period by scanning the excitation spectra of fluorophores.Here, we explore the selection of optimal channels for both significant signal separation and sufficient signal detectionusing excitation-scanning hyperspectral imaging.Excitation spectra were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arclamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Tunable filters had bandwidths between 13 and 17nm. Scans utilized excitation wavelengths between 340 nm and 550 nm. Hyperspectral image stacks were generated andanalyzed using ENVI and custom MATLAB scripts. Among channel consideration criteria were: number of channels,spectral range of scan, spacing of center wavelengths, and acquisition time.
机译:荧光显微镜的主要优点是现在可以选择很多荧光标记。可以选择这些标记来发挥补充功能,例如跟踪标界的有机细胞附近的标记亚细胞分子。但是,对于标准的3或4个发射通道,与RGB着色一样,多个标签检测仅限于电磁波谱的隔离区域。高光谱成像允许用户通过其独特的光谱特性来识别许多荧光标记,前提是它们的发射光谱有显着差异。该技术的成本通常是增益或曝光时间的增加,以适应将信号分离为许多离散的激励或发射通道而产生的信号减小。高光谱成像的最新进展\ r \ n通过扫描荧光团的激发光谱,可以在较短的时间内获取更多的信号。\ r \ n在这里,我们探索了用于有效信号分离和足够信号检测的最佳通道的选择\使用激发扫描高光谱成像。使用定制的倒置显微镜(TE-2000,尼康仪器公司)使用Xe弧形灯和薄膜可调滤光片阵列(VersaChrome,Semrock,Inc。)获得激发光谱。 )可调滤波器的带宽在13到17 \ r \ nnm之间。扫描利用了340 nm至550 nm之间的激发波长。使用ENVI和自定义MATLAB脚本生成并分析了高光谱图像堆栈。通道考虑的标准包括:通道数,扫描光谱范围,中心波长的间隔和采集时间。

著录项

  • 来源
  • 会议地点 1605-7422;2410-9045
  • 作者单位

    Department of Chemical Biomolecular Engineering, University of South Alabama Center forLung Biology, University of South Alabama Department of Pharmacology, University of SouthAlabama;

    Center for Lung Biology, University of South Alabama Department of Pharmacology, University of South Alabama;

    Department of Chemical Biomolecular Engineering, University of South Alabama Center forLung Biology, University of South Alabama Department of Pharmacology, University of SouthAlabama;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号