【24h】

The Structural Biology of Muscle: Spatial and Temporal Aspects

机译:肌肉的结构生物学:时空方面

获取原文
获取原文并翻译 | 示例

摘要

Understanding muscle contraction has resulted from the synergy of a number of approaches for which structure has provided an integrating framework. Nearly 60 years ago interference and phase contrast light microscopy established the sliding filament model of muscle contraction. A little later H.E. Huxley exploited electron microscopy to visualize the macromolecular architecture of the sarcomere: the thick (myosin) and thin (actin) filaments with connecting myosin cross-bridges. These observations allowed him to outline a structural basis for muscle contraction: a rowing-like progression of the myosin cross-bridges along the actin filament. X-ray fibre diffraction from insect flight muscle first demonstrated that the cross-bridges could indeed take up two configurations that might represent the ends of an active stroke. Later intense X-ray synchrotron radiation allowed the recording of the movements of the cross-bridges during a contraction with high precision. In 1993 Rayments's group ushered in a much more detailed understanding of myosin function by solving the structure of the myosin cross-bridge by X-ray crystallography. It showed that the cross-bridge consists of a large catalytic domain, often called the motor domain, containing the ATP binding site and the actin binding site. At the C-terminus of the motor domain is a long lever arm. The catalytic mechanism is similar to the G-proteins: the active site contains a P-loop and switch 1 and switch 2 elements. The lever arm was later found in two different conformations (so called pre-power-stroke and post-rigor) showing how switch 2 movement is coupled to a swing of the lever arm. Further cry stallographic studies coupled with high resolution em reconstructions of decorated actin (the rigor complex) showed how ATP binding sequesters switch 1 thereby opening the large cleft in the motor domain and breaking the strong binding to actin. Conversely, the strong binding to actin causes a movement of switch 1 with respect to the P-loop that destroys the nucleotide binding site, bringing about the release of ADP. There remains one unknown structure of seminal importance: the start the power stroke. During the cross-bridge cycle the cross-bridge in the pre-power stroke form loaded with ADP and phosphate rebinds to actin. The actin binding cleft must close without initially destroying the nucleotide binding site but in a way that enables phosphate release.
机译:对肌肉收缩的理解源于多种方法的协同作用,这些方法的结构提供了一个整合的框架。近60年前,干涉和相衬光学显微镜建立了肌肉收缩的滑动丝模型。过了一会赫x黎利用电子显微镜观察了肌节的大分子结构:粗的(肌球蛋白)丝和细的(肌动蛋白)丝以及连接的肌球蛋白横桥。这些观察结果使他能够勾勒出肌肉收缩的结构基础:沿着肌动蛋白丝的肌球蛋白跨桥呈划船状发展。昆虫飞行肌肉的X射线纤维衍射首先表明,跨桥确实可以占据两种可能代表活动性卒中终点的形态。后来,强烈的X射线同步加速器辐射允许以高精度记录横桥在收缩过程中的运动。在1993年,Rayments的小组通过X射线晶体学解决了肌球蛋白横桥的结构,对肌球蛋白功能有了更详细的了解。结果表明,跨桥由一个大的催化结构域(通常称为运动结构域)组成,包含ATP结合位点和肌动蛋白结合位点。在电机域的C端是一个长杠杆臂。催化机制类似于G蛋白:活性位点包含一个P环以及开关1和开关2元素。后来发现杠杆臂具有两种不同的构型(所谓的前冲程和后僵化),显示了开关2的运动如何与杠杆臂的摆动耦合。进一步的晶体学研究与修饰的肌动蛋白(严格的复合物)的高分辨率em重建相结合,显示了ATP结合的螯合剂如何转换1从而打开运动域中的大裂口并破坏了对肌动蛋白的强结合。相反,与肌动蛋白的强结合导致开关1相对于P环的运动,破坏了核苷酸结合位点,导致ADP释放。还有一个具有重要意义的未知结构:启动动力冲程。在跨桥循环过程中,动力前冲程形式的跨桥装载了ADP和磷酸盐,重新结合到肌动蛋白上。肌动蛋白结合裂必须在不破坏核苷酸结合位点的前提下闭合,但必须使磷酸盐释放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号