【24h】

Microbial communities and their interactions in biofilm systems: an overview

机译:微生物群落及其在生物膜系统中的相互作用:概述

获取原文
获取原文并翻译 | 示例

摘要

Several important advances have been made in the study of biofilm microbial populations relating to their spatial structure (or architecture), their community structure, and their dependence on physicochemical parameters. With the knowledge that hydrodynamic forces influence biofilm architecture came the realization that metabolic processes may be enhanced if certain spatial structures can be forced. An example is the extent of plasmid-mediated horizontal gene transfer in biofilms. Recent in situ work in defined model systems has shown that the biofilm architecture plays a role for genetic transfer by bacterial conjugation in determining how far the donor cells can penetrate the biofilm. Open channels and pores allow for more efficient donor transport and hence more frequent cell collisions leading to rapid spread of the genes by horizontal gene transfer. Such insight into the physical environment of biofilms can be utilized for bioenhancement of catabolic processes by introduction of mobile genetic elements into an existing microbial community. If the donor organisms themselves persist, bioaugmentation can lead to successful establishment of newly introduced species and may be a more successful strategy than biostimulation (the addition of nutrients or specific carbon sources to stimulate the autochthonous population) as shown for an enrichment culture of nitrifying bacteria added to rotating disk biofilm reactors using fluorescent in situ hybridization (FISH) and microelectrode measurements of NH_4~+, NO_2~-, NO_3~-, and O_2. However, few studies have been carried out on full-scale systems. Bioaugmentation and bioenhancement are most successful if a constant selective pressure can be maintained favoring the promulgation of the added enrichment culture. Overall, knowledge gain about microbial community interactions in biofilms continues to be driven by the availability of methods for the rapid analysis of microbial communities and their activities. Molecular tools can be grouped into those suitable for ex situ and in situ community analysis. Non-spatial community analysis, in the sense of assessing changes in microbial populations as a function of time or environmental conditions, relies on general fingerprinting methods, like DGGE and T-RFLP, performed on nucleic acids extracted from biofilm. These approaches have been most useful when combined with gene amplification, cloning and sequencing to assemble a phylogenetic inventory of microbial species. It is expected that the use of oligonucleotide microarrays will greatly facilitate the analysis of microbial communities and their activities in biofilms. Structure-activity relationships can be explored using incorporation of ~(13)C-labeled substrates into microbial DNA and RNA to identify metabolically active community members. Finally, based on the DNA sequences in a biofilm, FISH probes can be designed to verify the abundance and spatial location of microbial community members. This in turn allows for in situ structure/function analysis when FISH is combined with microsensors, microautoradiography, and confocal laser scanning microscopy with advanced image analysis.
机译:关于生物膜微生物种群的空间结构(或构造),群落结构及其对理化参数的依赖性,研究取得了一些重要进展。有了流体动力影响生物膜结构的知识,人们意识到如果可以强制某些空间结构,则可以增强代谢过程。一个例子是生物膜中质粒介导的水平基因转移的程度。在定义的模型系统中,最新的原位研究表明,生物膜结构通过细菌结合在遗传转移中起着一定的作用,它决定了供体细胞可以穿透生物膜的距离。开放的通道和孔允许更有效的供体运输,并因此更频繁地发生细胞碰撞,从而通过水平基因转移快速扩散基因。通过将移动遗传元件引入现有的微生物群落中,对生物膜的物理环境的这种了解可以用于分解代谢过程的生物增强。如果供体有机体自身持续存在,则生物强化可以导致成功建立新引入的物种,并且比生物刺激(添加营养物质或特定碳源以刺激自生种群)更成功的策略,如硝化细菌的富集培养所示。使用荧光原位杂交(FISH)和NH_4〜+,NO_2〜-,NO_3〜-和O_2的微电极测量将其添加到转盘生物膜反应器中。但是,很少有关于全尺寸系统的研究。如果可以保持有利于添加的富集培养物的颁布的恒定选择压力,则生物增强和生物增强是最成功的。总体而言,关于生物膜中微生物群落相互作用的知识的获取继续受到对微生物群落及其活动的快速分析方法的可用性的推动。分子工具可以归类为适合异地和原位社区分析的工具。从评估微生物种群随时间或环境条件变化的意义上讲,非空间群落分析依赖于对从生物膜提取的核酸进行的常规指纹识别方法,如DGGE和T-RFLP。当与基因扩增,克隆和测序结合以建立微生物种类的系统发育清单时,这些方法最为有用。预期使用寡核苷酸微阵列将极大地促进微生物群落及其在生物膜中的活性的分析。可以使用〜(13)C标记的底物掺入微生物DNA和RNA中以鉴定代谢活性社区成员,从而探索结构与活性之间的关系。最后,基于生物膜中的DNA序列,可以设计FISH探针以验证微生物群落成员的丰度和空间位置。当FISH与微传感器,微放射自显影以及具有高级图像分析功能的共聚焦激光扫描显微镜结合使用时,这又可以进行原位结构/功能分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号