首页> 外文会议>International Symposium on Supercritical Fluids Tome 2: SCF Properties Reactions; 20030428-20030430; Versailles; FR >MEMBRANE CARBON DIOXIDE STERILIZATION, OF LIQUID FOODS: SCALE UP OF A COMMERCIAL CONTINUOUS PROCESS
【24h】

MEMBRANE CARBON DIOXIDE STERILIZATION, OF LIQUID FOODS: SCALE UP OF A COMMERCIAL CONTINUOUS PROCESS

机译:膜食品的二氧化碳灭菌,液体的商业化生产

获取原文
获取原文并翻译 | 示例

摘要

The objective of this work is to provide guidelines for scaling up a commercial continuous process. Sims proposed such a process with partial recycle of carbon dioxide. It is most important to recognize that the kinetics of carbonation and of kill are separate and need to be optimized individually. The process sequence is shown in Figure 1. It was shown by Sims that the highest microbial killing rate is achieved when the concentration of dissolved carbon dioxide is at saturation at a particular operating pressure and temperature in the holding tube. The solubility of carbon dioxide in water, Figure 2, shows why an operating pressure of about 75 bar is near optimum. Solubility increase rapidly with increasing pressure up to 50 - 75 bar, but an increase of pressure beyond 75 bar gives little additional increase in solubility or of microbial killing rate. The minimum operating temperature in the holding tube is set by the degree of sterility required and the type of microorganisms. Most pathogenic and spoilage microorganisms in their vegetative state are killed at 40℃, and their spores at 45℃, Optimizing the holding tube is simply a matter of choosing tubing size so that a residence time of about one minute and a plug flow velocity profile is achieved, i.e. a Reynolds Number of greater than 3000. Because the cost of a membrane contactor is based on its active surface area ($/m~2), the optimized membrane carbonator achieves the following criterion: flowrat/area = > maximum The optimum membrane contactor achieves the highest flux of carbon dioxide. The flux in a hollow fiber membrane increases with feed liquid velocity as shown in Figure 3.
机译:这项工作的目的是为扩大商业连续过程提供指导。 Sims提出了这种方法,该方法可以部分回收二氧化碳。最重要的是要认识到碳酸化和杀灭的动力学是分开的,需要分别进行优化。该过程顺序如图1所示。Sims表明,当在固定管中的特定操作压力和温度下,溶解的二氧化碳浓度达到饱和时,可以实现最高的微生物杀灭率。二氧化碳在水中的溶解度(图2)说明了为何约75 bar的工作压力接近最佳。随着压力增加到50-75 bar,溶解度迅速增加,但是超过75 bar的压力增加几乎没有增加溶解度或微生物杀灭率。保持管中的最低工作温度由所需的无菌程度和微生物的类型设置。大多数处于营养状态的致病和变质微生物在40℃被杀死,而其孢子则在45℃被杀死。优化保温管仅是选择管子尺寸的问题,以使停留时间约为一分钟,塞流速度曲线为膜接触器的成本基于其有效表面积($ / m〜2),因此优化的膜碳酸化器达到以下标准:流量/面积=>最大值最优膜接触器可实现最高的二氧化碳通量。中空纤维膜中的通量随着进料速度的增加而增加,如图3所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号