首页> 外文会议>International Symposium on Ecomaterials and Ecoprocesses; 20030824-20030827; Vancouver; CA >Mesoscopic Design for Barrier Free Processing toward Up-Grade Recycling
【24h】

Mesoscopic Design for Barrier Free Processing toward Up-Grade Recycling

机译:介观设计,可实现无障碍处理,实现向上回收

获取原文
获取原文并翻译 | 示例

摘要

The recyclable materials lower their grade inevitably after being reused many times. Various impurities and contaminants are housed into materials. Then, the whole recyclable materials, the grade of which becomes lower than the engineering tolerance, must be wasted and ejected from the recycling material loop. The point to be discussed here is how many times the same materials can be reused in this recycling loop or how to make up-grading of recyclable materials. In the barrier-free processing, mesoscopic material design is reconsidered for this up-grading without excessive use of energy. At the first stage, the light-weight metallic materials are employed as a target to discuss the suitable mesoscopic material design for many-time reuse of recyclable materials. The present mesoscopic design is based on the grain refinement as a subsidiary condition. Since the impurities or the additive recyclable materials are processed into fine dispersions in the refined material matrix, low strength as well as low ductility can be improved to meet the required grade level by mechanical engineering for reuse. In the present paper, the mesoscopic design principles for magnesium alloys are first discussed on the basis of crystallographic plasticity theory. The whole principles are expected to work for the microstructure-controlled or the grain-refined light-weight materials. The strengthening principle by fine, homogeneous dispersion is employed for experimental demonstration of the mesoscopic design for recyclable materials. AZ31 magnesium alloy chips as well as fragmented silicon chips from wasted Si-wafer are employed as a starting recycled material. The blended mixture is homogeneously mixed and refined for subsequent hot-extrusion process. Owing to homogeneous refining, the in-situ, solid-state reaction takes place at the relatively low temperature, so that the synthesized Mg_2Si finely disperses in the original magnesium alloy matrix without the coarsening of dispersions and their segregation along the grain boundaries. These microstructure control leads to high qualification of mechanical strength without loss of ductility. In the case of solid-state recycling for magnesium alloys, this type mesoscopic material design can be further extended to a new type of forming or redox-forming for various recyclable input materials.
机译:可回收材料在多次重复使用后不可避免地会降低其等级。各种杂质和污染物被容纳在材料中。然后,必须废弃其等级低于工程公差的全部可回收材料,并将其从回收材料回路中排出。这里要讨论的要点是,相同的材料可以在此回收循环中重复使用多少次,或者如何对可回收材料进行分级。在无障碍工艺中,介观材料设计被重新考虑用于这种升级,而不会过度消耗能量。在第一阶段,以轻质金属材料为目标,以讨论适合于多次重复利用可回收材料的介观材料设计。当前的介观设计基于晶粒细化作为辅助条件。由于杂质或添加剂可循环利用的材料在精制的材料基质中被加工成细小的分散体,因此可以通过机械工程改进低强度以及低延展性,以达到要求的等级水平,以进行再利用。本文首先根据结晶学可塑性理论讨论了镁合金的介观设计原理。预期整个原理适用于受微结构控制或晶粒细化的轻质材料。通过细微均匀分散的强化原理被用于可回收材料介观设计的实验演示。 AZ31镁合金碎片以及来自浪费的硅晶圆的碎片化硅碎片都用作起始的回收材料。将混合的混合物均匀混合并精炼,以用于随后的热挤压工艺。由于均质精炼,原位固相反应在相对较低的温度下发生,因此合成的Mg_2Si可以很好地分散在原始的镁合金基体中,而不会导致分散体的粗化和沿晶界的偏析。这些微结构的控制导致了机械强度的高标准而又没有延展性的损失。在镁合金的固态回收的情况下,这种介观材料设计可以进一步扩展为用于各种可回收输入材料的新型成型或氧化还原成型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号