首页> 外文会议>International Symposium on Combustion; 20060805-11; University of Heidelberg(DE) >A detailed model for the flame synthesis of carbon nanotubes and nanofibers
【24h】

A detailed model for the flame synthesis of carbon nanotubes and nanofibers

机译:碳纳米管和纳米纤维火焰合成的详细模型

获取原文
获取原文并翻译 | 示例

摘要

Many experimental investigations of CNT/CNF flame synthesis have been recently reported. However, there are as yet no comprehensive models regarding their formation, growth or structure. Herein, a CNT/ CNF growth rate model is proposed that is applicable for any method of CNT/CNF production (although our particular interest lies in flame synthesis in ethylene/air flames). While it is usual for most existing models to consider only a single carbon-carrying gas that contributes towards carbon deposition, our extended model can consider a complex hydrocarbon mixture that can mimic a flame environment. The model shows that before carbon nucleation is initiated, the surface density of carbon atoms increases as they are added through diffusion from the leading face of the catalyst nanoparticle. Over time, the diffusion potential decreases due to a reduction in the carbon atom concentration gradient. However, with the onset of nucleation and growth, diffusion is reinstated as the major driving potential for carbon atom transport through the nanoparticle. Steady carbon deposition and filament growth occurs once there is a stable carbon cluster size due to nucleation. The results support our hypothesis that flame synthesis can be a much faster and higher throughput process than CVD. The CNT/CNF growth rate decreases with increasing height above the burner. Decreasing temperature at higher locations leads to slower catalyst deactivation, but the CO concentration, which is the major contributor to carbon deposition, also decreases with increasing height above the burner. One of the major findings in this work is the contribution of CO to CNT formation by flame synthesis. The concentration of hydrocarbons in the vicinity of the toroidal zone near, which most of the CNT growth is observed, is negligible compared to CO concentration. Our results provide a basis to conduct future multiscale simulations of CNT/CNF growth.
机译:最近已经报道了许多CNT / CNF火焰合成的实验研究。但是,目前尚无关于其形成,增长或结构的综合模型。在此,提出了一种适用于任何CNT / CNF生产方法的CNT / CNF增长率模型(尽管我们特别关注乙烯/空气火焰中的火焰合成)。虽然大多数现有模型通常只考虑一种会导致碳沉积的载气气体,但我们的扩展模型可以考虑一种可以模拟火焰环境的复杂碳氢化合物混合物。该模型显示,在开始碳成核之前,碳原子的表面密度随着它们通过从催化剂纳米颗粒的前导面扩散而添加而增加。随着时间的流逝,由于碳原子浓度梯度的减小,扩散势降低。然而,随着成核和生长的开始,扩散被恢复为碳原子通过纳米颗粒传输的主要驱动潜力。一旦由于成核而形成稳定的碳簇尺寸,就会发生稳定的碳沉积和细丝生长。结果支持了我们的假设,即火焰合成比CVD可以更快,更高。 CNT / CNF的增长率随着燃烧器上方高度的增加而降低。在较高位置降低温度会导致催化剂失活速度变慢,但是作为碳沉积的主要因素的CO浓度也会随着燃烧器上方高度的增加而降低。这项工作的主要发现之一是一氧化碳对火焰合成中碳纳米管形成的贡献。与CO浓度相比,可以观察到大部分CNT生长的环形区域附近的碳氢化合物浓度可以忽略不计。我们的结果为进行未来的CNT / CNF增长多尺度模拟提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号