【24h】

Removal of Mixed BTEX and Heavy-Metals Pollution

机译:去除混合的BTEX和重金属污染

获取原文
获取原文并翻译 | 示例

摘要

At a site polluted with a mixture of BTEX and heavy metals, different remediation techniques were applied. In the source, the bulk of the BTEX contamination was removed by pump-and-treat (72% BTEX removed) and soil vapor extraction (52% BTEX compounds removed) from the saturated and unsaturated zone respectively. For remediation of the rest of the BTEX compounds and heavy metals in the plume, natural attenuation and phytoremediation were applied. It was investigated if the TEX degradation could be coupled to in situ bioprecipitation by sulfate-reducing bacteria of the heavy metals Zn and Ni for a part of the site with a high (GP66: 45000 ppb BTEX, 938 ppb Zn, 284 ppb Ni), medium (GP48: 16000 ppb BTEX, 60 ppb Zn, 49 ppb Ni) and low (GP59: 250 ppb BTEX, 1226 ppb Zn, 113 ppb Ni) concentration of BTEX and heavy metals. Therefore batch degradation tests with aquifer material and groundwater (containing in situ TEX concentrations) from the locations GP48, GP59 and GP66, sulfate as an electron-acceptor, and different carbon sources such as TEX (in the groundwater), lactate, HRC~R, and molasses were started. Neither TEX degradation nor removal of heavy metals was observed in the heavily polluted GP66 part of the site. For GP48 and GP59 a fast removal of Zn was observed in the presence of all the carbon sources. However, Ni was bioprecipitated only after the addition of lactate or TEX and not with the other carbon sources. It was also obvious that degradation of the TEX coincided with the bioprecipitation of the heavy metals. Although the other carbon sources clearly stimulated the bioprecipitation of the heavy metals, they inhibited the degradation of TEX.
机译:在被BTEX和重金属混合物污染的现场,采用了不同的修复技术。在源头中,分别通过抽水处理(去除了72%的BTEX)和土壤蒸汽提取(去除了52%的BTEX化合物)去除了大部分BTEX污染物。为了对烟羽中的其余BTEX化合物和重金属进行修复,采用了自然衰减和植物修复。研究了是否可以通过硫酸盐还原细菌将重金属Zn和Ni的硫酸盐还原菌与高降解率(GP66:45000 ppb BTEX,938 ppb Zn,284 ppb Ni)结合用于TEX降解与原位生物沉淀的耦合。 ,BTEX和重金属的中浓度(GP48:16000 ppb BTEX,60 ppb Zn,49 ppb Ni)和低浓度(GP59:250 ppb BTEX,1226 ppb Zn,113 ppb Ni)。因此,使用GP48,GP59和GP66地点的含水层材料和地下水(含有原位TEX浓度),硫酸盐作为电子受体以及不同的碳源(例如TEX(在地下水中),乳酸,HRC〜R)对批次进行降解测试,并且开始了糖蜜。在污染严重的GP66部分,未发现TEX降解或重金属去除。对于GP48和GP59,在所有碳源均存在的情况下,可以快速去除Zn。但是,仅在添加乳酸或TEX后才使Ni发生生物沉淀,而其他碳源则没有。同样很明显,TEX的降解与重金属的生物沉淀相吻合。尽管其他碳源显然刺激了重金属的生物沉淀,但它们抑制了TEX的降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号