首页> 外文会议>International School of Physics "Enrico Fermi": Course CL Jun 25-Jul 5, 2002 Varenna >Semiconductor Bloch equations for classical and quantum fields
【24h】

Semiconductor Bloch equations for classical and quantum fields

机译:用于经典场和量子场的半导体Bloch方程

获取原文
获取原文并翻译 | 示例

摘要

For several decades, the optical response of semiconductors has been the subject of intense experimental and theoretical investigations. Consequently, many basic features are well understood by now, and some properties are even exploited in commercial devices such as light-emitting diodes, semiconductor laser, optical switches, etc. Nevertheless, the field of semiconductor optics, both in experiments and theory, is very active and develops rapidly. It benefits from advances in computer capabilities and in semiconductor crystal growth. The increasing computer capacity allows more profound, accurate, and realistic modeling of the semiconductor structures. At the same time, the advances in crystal growth technology provide us with improved samples which are almost disorder-less already today. In particular, the growth of quantum wells with narrower exciton linewidths and quantum dots with larger dipole moments and reduced dephasing rates may be achieved, which is certain to make even quantum-optical features increasingly apparent and unavoidable. All these research efforts eventually focus on producing devices utilizing quantum-mechanical principles. One of the main objectives endeavors to develop quantum logic components for building blocks of quantum computers. Similar expanding possibilities can be expected, e.g., for accuracy of detection, device efficiency, and component design in general. Considering all of this, we are almost guaranteed to see new astonishing advancements; in this bright future, semiconductor optics and particularly semiconductor cavity QED research will most likely be pre-eminent elements.
机译:几十年来,半导体的光学响应一直是激烈的实验和理论研究的主题。因此,到目前为止,许多基本特征已经被很好地理解,并且甚至在诸如发光二极管,半导体激光器,光开关等商业设备中也利用了一些特性。然而,无论在实验还是理论上,半导体光学领域都是非常活跃,发展迅速。它得益于计算机功能和半导体晶体生长的进步。不断增加的计算机容量允许对半导体结构进行更深入,准确和现实的建模。同时,晶体生长技术的进步为我们提供了改进的样品,这些样品如今已几乎无病。特别地,可以实现具有更窄激子线宽的量子阱的生长以及具有更大偶极矩和降低的相移速率的量子点的生长,这必将使甚至量子光学特征变得越来越明显和不可避免。所有这些研究工作最终都集中在利用量子力学原理生产器件上。主要目标之一是努力开发用于量子计算机构建块的量子逻辑组件。可以预期类似的扩展可能性,例如,对于检测的准确性,设备效率和总体上的组件设计。考虑到所有这些,我们几乎可以保证看到新的惊人进步。在这个光明的未来,半导体光学,尤其是半导体腔体QED研究将很可能是最重要的元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号