首页> 外文会议>International School of Physics "Enrico Fermi": Course CL Jun 25-Jul 5, 2002 Varenna >Ferromagnetic imprinting and proximity effects in semiconductors
【24h】

Ferromagnetic imprinting and proximity effects in semiconductors

机译:半导体中的铁磁烙印和邻近效应

获取原文
获取原文并翻译 | 示例

摘要

We have examined the electronic properties associated with semiconductor electrons that are in proximity with a ferromagnet. Instead of focusing on the injection of ferro-magnet electrons into the semiconductor through the interface, we have instead chosen to look at the properties of semiconductor electrons that can interact with a ferromagnetic epilayer. We have focused on two main effects: the reflection of non-equilibrium electrons from the interface, and the coupling of 2DEG with a ferromagnetic gate. Both have relevance to spintronics applications. For n-doped semiconductors with ferromagnetic epilayers, we have calculated the spin-dependent reflectivities for electrons incident on the Schottky barrier from the semi- conductor. We find that the shape of the barrier has a large impact on the asymmetry between reflection for the two spin channels, and significantly that the sign of the asymmetry can change depending on the system parameters. The ability to control the spin polarization by tuning the properties of the Schottky barrier (through the semiconductor doping or through an applied bias, for example) is very appealing for device design. We have further studied the effect of coupling 2DEG electrons at a semiconductor interface with a ferromagnetic gate separated from the semiconductor by a thin oxide barrier. Here, the electron is confined at the interface, which is similar to the multiple-reflection limit of the earlier work. We find that for very thin oxide barriers, the coupling of the 2DEG electrons to the ferromagnet is non-negligible. The self-energy of the 2DEG electrons due to the interaction with the ferromagnetic continuum produces both a spin-dependent level shift and a spin-dependent escape time. These spin effects can be exploited in transport-based devices. We find that the dominant effect is the broadening of the 2DEG energy levels due to the coupling. This effect opens a new scattering channel for 2DEG electrons to escape into the ferromagnetic continuum, which causes the in-plane conductivity of the 2DEG to become inherently spin dependent. We have described our recent proposal of a device which operates on this principle, consisting of a normal MOSFET-style device with the normal metallic gate replaced with two ferromagnetic gates that are very close together. Due to the spin dependence of the in-plane conductivity, a magnetoresistance effect occurs in the in-plane current depending on the relative orientation of the magnetizations of the two ferromagnetic gates. We have calculated the behavior of such a device for two realistic systems.
机译:我们已经检查了与铁磁体附近的半导体电子相关的电子特性。与其专注于通过接口将铁磁电子注入半导体,我们不如选择研究可以与铁磁外延层相互作用的半导体电子的特性。我们关注了两个主要影响:界面上非平衡电子的反射,以及2DEG与铁磁门的耦合。两者都与自旋电子学应用相关。对于具有铁磁外延层的n掺杂半导体,我们已经计算了从半导体入射到肖特基势垒的电子的自旋相关反射率。我们发现,势垒的形状对两个自旋通道的反射之间的不对称性影响很大,并且显着地,不对称性的符号会根据系统参数而改变。通过调整肖特基势垒的特性(例如,通过半导体掺杂或通过施加偏置)来控制自旋极化的能力对于器件设计非常有吸引力。我们进一步研究了在半导体界面上耦合2DEG电子与通过薄氧化物势垒与半导体隔开的铁磁门的耦合效应。在这里,电子被限制在界面上,这类似于早期工作的多次反射极限。我们发现,对于非常薄的氧化物势垒,2DEG电子与铁磁体的耦合是不可忽略的。由于与铁磁连续体的相互作用,2DEG电子的自能产生自旋相关的能级位移和自旋相关的逸出时间。可以在基于传输的设备中利用这些自旋效应。我们发现,主导效应是由于耦合导致2DEG能级的扩大。该效应为2DEG电子逃逸到铁磁连续体中打开了一个新的散射通道,这导致2DEG的面内电导率固有地自旋。我们已经描述了我们最近提出的基于该原理工作的器件的建议,该器件包括一个普通的MOSFET型器件,其中普通的金属栅极被两个非常靠近的铁磁栅极所代替。由于面内电导率的自旋依赖性,取决于两个铁磁门的磁化的相对取向,在面内电流中产生磁阻效应。我们已经针对两个实际系统计算了这种设备的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号