首页> 外文会议>International Conference on Theory and Applications of Models of Computation(TAMC 2007); 20070522-25; Shanghai(CN) >A Comparative Study of Efficient Algorithms for Partitioning a Sequence into Monotone Subsequences
【24h】

A Comparative Study of Efficient Algorithms for Partitioning a Sequence into Monotone Subsequences

机译:将序列划分为单调子序列的高效算法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Tradeoffs between time complexities and solution optimalities are important when selecting algorithms for an NP-hard problem in different applications. Also, the distinction between theoretical upper bound and actual solution optimality for realistic instances of an NP-hard problem is a factor in selecting algorithms in practice. We consider the problem of partitioning a sequence of n distinct numbers into minimum number of monotone (increasing or decreasing) subsequences. This problem is NP-hard and the number of monotone subsequences can reach「(2n + 1/4)~(1/2) -1/2」 in the worst case. We introduce a new algorithm, the modified version of the Yehuda-Fogel algorithm, that computes a solution of no more than 「(2n +1/4)~(1/3) -1/2 」 monotone subsequences in O(n~(1.5)) time. Then we perform a comparative experimental study on three algorithms, a known approximation algorithm of approximation ratio 1.71 and time complexity O(n~3), a known greedy algorithm of time complexity O(n~(1.5) log n), and our new modified Yehuda-Fogel algorithm. Our results show that the solutions computed by the greedy algorithm and the modified Yehuda-Fogel algorithm are close to that computed by the approximation algorithm even though the theoretical worst-case error bounds of these two algorithms are not proved to be within a constant times of the optimal solution. Our study indicates that for practical use the greedy algorithm and the modified Yehuda-Fogel algorithm can be good choices if the running time is a major concern.
机译:在为不同应用中的NP难题选择算法时,时间复杂度和解决方案最优性之间的权衡很重要。同样,对于NP难题的实际情况,理论上限与实际解的最优性之间的区别是在实践中选择算法的一个因素。我们考虑将n个不同数字的序列划分为最小数量的单调(递增或递减)子序列的问题。这个问题是NP难的,在最坏的情况下单调子序列的数量可以达到“((2n + 1/4)〜(1/2)-1/2)”。我们引入了一种新算法,即Yehuda-Fogel算法的改进版本,该算法在O(n〜)中计算的解不超过「(2n +1/4)〜(1/3)-1/2」单调子序列(1.5))时间。然后,我们对三种算法进行了比较实验研究,这三种算法分别是已知的近似比1.71和时间复杂度O(n〜3)的近似算法,已知的时间复杂度O(n〜(1.5)log n)的贪婪算法以及我们的新算法修改后的Yehuda-Fogel算法。我们的结果表明,即使没有证明这两种算法的理论上最坏情况的误差范围在恒定时间内,贪婪算法和改进的Yehuda-Fogel算法所计算的解也接近于近似算法所计算的解。最佳解决方案。我们的研究表明,如果运行时间是一个主要问题,那么贪婪算法和改进的Yehuda-Fogel算法在实际应用中可能是不错的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号