【24h】

CONSTITUTIVE MODELING FOR POWDER COMPACTION AND DENSIFICATION

机译:粉末压实和致密化的本构模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper an internal state variable material model for powder metallurgy component design and performance prediction is developed and evaluated using finite element analysis. The constitutive modeling is introduced as a first step of ongoing research of a multiscale and multistage mathematical based concept to capture the entire history of the P/M densification process. To describe the metal powder compaction and densification processes, a pressure sensitive plasticity model is represented by a double-yield surface, based on a combination of a convex yield surface comprising of a failure envelope, such as a Mohr-Coulomb yield surface, and a hardening cap model. The formulation uses the variables of temperature, stress, hardening, relative density, strain rate, contact between metal powder particles and other microstructural and mechanical aspects. Molecular Dynamics is also introduced in this multiscale methodology as numerical experiments to study the metal compaction and sintering processes at the nanoscale level. These numerical experimental data are aimed to determine and correlate the microstructure-plasticity relationships for the macroscale formulation. To accurately describe the compaction process, some material parameters are density dependent variables as indicated from experimental data collected from the literature. Finally, the model is implemented in a finite element program and numerical results of a compaction of cylindrical geometry are presented to illustrate the capability of the model.
机译:本文建立了用于粉末冶金部件设计和性能预测的内部状态可变材料模型,并使用有限元分析对其进行了评估。介绍本构模型是正在进行的基于多尺度和多阶段数学概念的研究的第一步,以捕获P / M致密化过程的整个历史。为了描述金属粉末的压实和致密化过程,压敏塑性模型由双屈服面表示,该双屈服面基于包含破坏包络的凸屈服面(例如Mohr-Coulomb屈服面)和硬化帽模型。该配方使用温度,应力,硬化,相对密度,应变率,金属粉末颗粒之间的接触以及其他微结构和机械方面的变量。在这种多尺度方法学中还引入了分子动力学作为数值实验,以研究纳米尺度水平的金属压实和烧结过程。这些数值实验数据旨在确定和关联宏观配方的微观结构-塑性关系。为了准确地描述压实过程,某些材料参数是密度相关变量,如从文献中收集的实验数据所示。最后,该模型在有限元程序中实现,并给出了圆柱几何压缩的数值结果,以说明该模型的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号