首页> 外文会议>International Conference on Microreaction Technology Frankfurt/M. on April 18-21, 1999 >Simulation of microscale chemical separation processes using the lattice-boltzmann method
【24h】

Simulation of microscale chemical separation processes using the lattice-boltzmann method

机译:使用格-玻尔兹曼方法模拟微型化学分离过程

获取原文
获取原文并翻译 | 示例

摘要

FLuid flow in the micron to hundred micron size range promises to be qualitatively different from fluid flow in large geometries and offers many opportunities for creating and expliting novel flow configurations that can be used in chemical reactors and separations processes. The most significant difference between flow in conventional macrosized systems and flow at micron length scales is the increase in the relative importance of surface forces, particularly surface tension, as the dimensions of the flow configuration shrink. Surface tension forces between the fluid and the walls and at the interface between immiscible fluids are ordinarily negligable on length scales of a centimeter or so but can dominate the behavior of liquid in a 100 micron channel. The ability to include these effects in simulations of flow in microscale devices is critically important to support the design and testing of micro-chemical components and systems, but conventional fluid dynamics simulations are incapable of modeling the multiphase systems anticipated in many microtechnology applications. A promising new method for simulating fluid flow that can easily be adapted to multiphase flows is the lattice Boltzmann algorithm [1, 2]. One major advantage of the lattice Boltzmann method over other fluid dynamics simulation techniques is the ability to incorprate surface interaction terms directly into the equations of motion [3, 4]. This makes it possible to simulate multiphase-multicomponent systems in a straightforward way, without the introduction of complicated front-tracking techniques.
机译:微米到一百微米大小范围内的流体流在质量上与大几何形状中的流体流不同,并为创建和展开可用于化学反应器和分离过程的新型流配置提供了许多机会。传统的大型系统中的流量与微米长度尺度上的流量之间最显着的差异是,随着流量配置尺寸的缩小,表面力(尤其是表面张力)的相对重要性增加。通常,在厘米左右的长度尺度上,流体与壁之间以及不混溶流体之间的界面处的表面张力可以忽略不计,但可以控制100微米通道中液体的行为。在微型设备的流动模拟中包含这些影响的能力对于支持微化学成分和系统的设计和测试至关重要,但是常规的流体动力学模拟无法对许多微技术应用中预期的多相系统进行建模。可以很容易地适应多相流的一种有希望的模拟流体流的新方法是格子Boltzmann算法[1,2]。格子Boltzmann方法相对于其他流体动力学模拟技术的一个主要优点是能够将表面相互作用项直接合并到运动方程中[3,4]。这样就可以以直接的方式模拟多相多组分系统,而无需引入复杂的前跟踪技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号