首页> 外文会议>International Conference on Microchannels and Minichannels(ICMM2004); 20040617-20040619; Rochester,NY; US >JOULE HEATING INDUCED THERMAL AND HYDRODYNAMIC DEVELOPMENT IN MICROFLUIDIC ELECTROOSMOTIC FLOW
【24h】

JOULE HEATING INDUCED THERMAL AND HYDRODYNAMIC DEVELOPMENT IN MICROFLUIDIC ELECTROOSMOTIC FLOW

机译:焦耳加热诱导了微流体电渗流中的热力和水力动力学发展

获取原文
获取原文并翻译 | 示例

摘要

Joule heating is present in electrokinetically driven flow and mass transport in microfluidic systems. Specifically, in the cases of high applied voltages and concentrated buffer solutions, the thermal management may become a problem. In this study, a mathematical model is developed to describe the Joule heating and its effects on electroosmotic flow and mass species transport in microchannels. The proposed model includes the Poisson equation, the modified Navier-Stokes equation, and the conjugate energy equation (for the liquid solution and the capillary wall). Specifically, the ionic concentration distributions are modeled using (ⅰ) the general Nernst-Planck equation, and (ⅱ) the simple Boltzmann distribution. These governing equations are coupled through temperature-dependent phenomenological thermal-physical coefficients, and hence they are numerically solved using a finite-volume based CFD technique. A comparison has been made for the results of the ionic concentration distributions and the electroosmotic flow velocity and temperature fields obtained from the Nernst-Planck equation and the Boltzmann equation. The time and spatial developments for both the electroosmotic flow fields and the Joule heating induced temperature fields are presented. In addition, sample species concentration is obtained by numerically solving the mass transport equation, taking into account of the temperature-dependent mass diffusivity and electrophoresis mobility. The results show that the presence of the Joule heating can result in significantly different electroosmotic flow and mass species transport characteristics.
机译:在微流体系统中,电动驱动的流量和质量传输中存在焦耳热。具体地,在高施加电压和集中缓冲溶液的情况下,热管理可能成为问题。在这项研究中,建立了一个数学模型来描述焦耳热及其对微通道中电渗流和物质传输的影响。提出的模型包括泊松方程,修正的Navier-Stokes方程和共轭能量方程(用于液体溶液和毛细管壁)。具体而言,使用(ⅰ)一般的Nernst-Planck方程和(ⅱ)简单的玻尔兹曼分布对离子浓度分布进行建模。这些控制方程通过温度相关的现象热物理系数耦合,因此可以使用基于有限体积的CFD技术进行数值求解。比较了从Nernst-Planck方程和Boltzmann方程获得的离子浓度分布以及电渗流速和温度场的结果。给出了电渗流场和焦耳热诱导温度场的时间和空间变化。此外,考虑到温度相关的质量扩散系数和电泳迁移率,可以通过数值求解质量传递方程来获得样品的浓度。结果表明,焦耳热的存在可导致电渗流和物质传输特性明显不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号