首页> 外文会议>International conference on integration and commercialization of micro and nano systems (MNC2007 - MicroNanoChina07) >MOLECULAR DYNAMICS SIMULATIONS OF INTERFACIAL HEAT AND MASS TRANSFER AT NANOSTRUCTURED SURFACE
【24h】

MOLECULAR DYNAMICS SIMULATIONS OF INTERFACIAL HEAT AND MASS TRANSFER AT NANOSTRUCTURED SURFACE

机译:纳米结构表面界面传热和传质的分子动力学模拟

获取原文

摘要

The nanoscale heat and mass transport phenomena play important roles on the applications of nanotechnologies with great attention to its differences from the continuum mechanics. In this paper, the breakdown of the continuum assumption for nanoscale flows has been verified based on the molecular dynamics simulations and the heat transfer mechanism at the nanostructured solid-liquid interface in the nanochannels is studied from the microscopic point of view. Simple Lennard-Jones (LJ) fluids are simulated for thermal energy transfer in ananochannel using nonequilibrium molecular dynamics techniques. Multi-layers of platinum atoms are utilized to simulate the solid walls with arranged nanostructures and argon atoms are employed as the LJ fluid. The results show that the interface structure (I.e. the solid- like structure formed by the adsorption layers of liquid molecules) between solid and liquid are affected by the nanostructures. It is found that thehydrodynamic resistance and thermal resistance dependents on the surface wettability and for the nanoscale heat and fluid flows, the interface resistance cannot be neglected but can be reduced by the nanostructures. For the hydrodynamic boundary condition at the solid-liquid interface, the no-slip boundary condition holds good at the super-hydrophilic surface with large hydrodynamic resistance. However, apparent slip is observed at the low hydrodynamic resistance surface when the driving force overcomes the interfacial resistance. For the thermal boundary condition, it is found that the thermal resistance at the interface depends on the interface wettability and the hydrophilic surface has lower thermal resistance than that of the hydrophobic surfaces. The interface thermal resistance decreases at the nanostructed surface and significantheat transfer enhancement has been achieved at the hydrophilic nanostructured surfaces. Although the surface with nanostrutures has larger surface area than the flat surface, the rate of heat flux increase caused by the nanostructures is remarkable.
机译:纳米尺度的传热传质现象在纳米技术的应用中起着重要的作用,并特别注意其与连续体力学的区别。在本文中,基于分子动力学模拟验证了纳米级流动连续假设的分解,并从微观角度研究了纳米通道中纳米结构固液界面的传热机理。使用非平衡分子动力学技术对简单Lennard-Jones(LJ)流体在阳极通道中进行热能传递进行了仿真。多层铂原子被用来模拟具有排列的纳米结构的固体壁,而氩原子被用作LJ流体。结果表明,固体和液体之间的界面结构(即,由液体分子的吸附层形成的固体状结构)受到纳米结构的影响。发现流体动力学阻力和热阻取决于表面润湿性,并且对于纳米级的热和流体流动,界面阻力不能被忽略,但是可以通过纳米结构而减小。对于固液界面的水动力边界条件,在具有较大水动力阻力的超亲水表面上,防滑边界条件保持良好。但是,当驱动力克服界面阻力时,在低流体动力阻力表面会观察到明显的滑移。对于热边界条件,发现界面处的热阻取决于界面润湿性,并且亲水性表面的热阻低于疏水性表面的热阻。界面热阻在纳米结构表面处降低,并且在亲水性纳米结构表面处实现了显着的传热增强。尽管具有纳米结构的表面具有比平坦表面更大的表面积,但是由纳米结构引起的热通量增加速率是显着的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号