【24h】

FINITE ELEMENT MODELLING OF STRESS INDUCED CHEMICAL ATTACK

机译:应力诱发化学攻击的有限元建模

获取原文
获取原文并翻译 | 示例

摘要

Physical stresses upon polymer chains reduce covalent bond strength, accelerating chemical attack. This paper describes a process used to model and predict stress induced chemical attack in semi-conductor processing equipment. The methodology used was to characterise material behaviours at elevated temperatures and then perform three dimensional finite element analysis of a seal trapped within a groove. The study predicted the location of failure and the stress levels required to induce chemical attack. This method has proven to increase the service life of elastomers in aggressive chemical environments by controlling stresses through seal and groove design. Stress induced chemical attack is a macroscopic material failure due to mechanically propagated cracks, initiated by chemical degradation of a material. By applying a stress to an elastomer we deform the molecular chains, which both reduces the energy needed to break covalent bonds and introduces steric twisting that exposes the more chemically susceptible cross linking. This mechanism is known as "Stress induced chemical attack". The chemical attack initiates the formation of microscopic fissures. Once formed a crack will continue to propagate, growing slowly until it reaches a critical length, at which point the fracture energy causes rapid propagation of the crack across the whole section of the seal, causing the seal to break in a brittle-like manner. The most common output derived from finite element analysis is a plot of the Von-Mises stresses. Although this form of analysis can prove useful in predicting contact forces, or wholly mechanical failure, both Von-Mises and Tresca fail to predict the location or occurrence of stress induced chemical attack. When predicting stress induced chemical attack it is not purely the magnitude of the principal stresses which governs failure, but the direction, i.e. whether they are in tension or compression. Testing, together with numerous analyses, has shown that plasma may initiate stress induced chemical attack in Perfluoroelastomer materials with as little as 0.6MPa tensile stress on the exposed surface. The magnitudes of the principal stresses causing failure may be significantly below the ultimate tensile strength of the material at the operating temperature. When installed into a groove perfluoroelastomer seals should not be stretched by more than 2%, rather than the 5% often quoted. The use of interference at the top of a dove-tail groove to retain an o-ring should be avoided where prolonged direct exposure to chemical attack may occur.
机译:聚合物链上的物理应力会降低共价键强度,从而加速化学侵蚀。本文介绍了一种用于对半导体加工设备中的应力诱导的化学侵蚀进行建模和预测的过程。所使用的方法是表征高温下的材料行为,然后对陷在凹槽中的密封件进行三维有限元分析。该研究预测了失效的位置和诱发化学侵蚀所需的应力水平。通过密封和凹槽设计来控制应力,这种方法已被证明可以延长弹性体在腐蚀性化学环境中的使用寿命。应力诱导的化学侵蚀是宏观的材料破坏,是由于材料的化学降解而导致的机械传播的裂纹。通过对弹性体施加应力,我们使分子链变形,这既减少了破坏共价键所需的能量,又引入了空间扭曲,从而暴露出化学敏感性更高的交联。该机制被称为“应力诱导的化学攻击”。化学侵蚀会引发微观裂缝的形成。一旦形成裂纹,裂纹将继续传播,并缓慢增长直至达到临界长度,此时,断裂能会导致裂纹在密封件的整个截面上迅速传播,从而使密封件像脆性一样破裂。有限元分析得出的最常见输出是冯·米塞斯应力图。尽管这种形式的分析可以证明对预测接触力或整个机械故障很有用,但Von-Mises和Tresca都无法预测应力引起的化学侵蚀的位置或发生情况。当预测应力引起的化学侵蚀时,控制失效的不仅是主应力的大小,而是方向,即它们是处于拉伸状态还是处于压缩状态。测试以及大量分析表明,等离子体可能会引发全氟弹性体材料中应力诱发的化学侵蚀,而暴露表面上的拉应力低至0.6MPa。导致失效的主应力的大小可能大大低于工作温度下材料的极限抗拉强度。当安装到凹槽中时,全氟弹性体密封件的拉伸长度不应超过2%,而不是通常引用的5%。应避免在燕尾槽顶部使用过盈以保持O形圈,以防止长时间直接暴露在化学腐蚀下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号