【24h】

Axial Fission Gas Transport in Nuclear Fuel Rods

机译:核燃料棒中的轴向裂变气体传输

获取原文
获取原文并翻译 | 示例

摘要

Fission of fissile uranium or plutonium nucleus in nuclear fuel results in fission products. A small fraction of them are volatile and can migrate under the effect of concentration gradients to the grain boundaries of the fuel pellet. Eventually, some fission gases are released to the rod void volumes by a thermally activated process. Local transients of power generation could distort even further the already non-uniform axial power and fission gas concentration profiles in fuel rods. Most of the current fuel rod performance codes neglects these gradients and the resulting axial fission gas transport (i.e., gas mixing is considered instantaneous). Experimental evidences, however, highlight axial gas mixing as a real time-dependent process. The thermal feedback between fission gas release, gap composition and fuel temperature, make the "prompt mixing assumption" in fuel performance codes a key point to investigate due to its potential safety implications. This paper discusses the possible scenarios where axial transport can become significant. Once the scenarios are well characterized, the available database is explored and the reported models are reviewed to highlight their major advantages and shortcomings. The convection-diffusion approach is adopted to simulate the axial transport by decoupling both motion mechanisms (i.e., convection transport assumed to be instantaneous) and a stand-alone code has been developed. By using this code together with FRAPCON-3, a prospective calculation of the potential impact of axial mixing is conducted. The results show that under specific but feasible conditions, the assumption of "prompt axial mixing" could result in temperature underestimates for long periods of time. Given the coupling between fuel rod thermal state and fission gas release to the gap, fuel performance codes predictions could deviate non-conservatively. This work is framed within the CSN-CIEMAT agreement on "Thermo-Mechanical Behaviour of the Nuclear Fuel at High Burnup".
机译:核燃料中裂变铀或p核的裂变产生裂变产物。它们中的一小部分是挥发性的,并且可以在浓度梯度的作用下迁移至燃料颗粒的晶界。最终,一些裂变气体通过热激活过程释放到杆的空隙体积中。发电的局部瞬变甚至会进一步扭曲燃料棒中本来就不均匀的轴向功率和裂变气体浓度曲线。当前大多数的燃料棒性能代码都忽略了这些梯度以及由此产生的轴向裂变气体传输(即,气体混合被认为是瞬时的)。然而,实验证据表明轴向混合气体是一个实时过程。裂变气体释放,气隙成分和燃料温度之间的热反馈使燃料性能代码中的“迅速混合假设”成为潜在的安全隐患,成为研究的重点。本文讨论了轴向运输可能变得重要的可能方案。一旦对场景进行了很好的描述,就可以浏览可用的数据库并审查报告的模型以突出其主要优点和缺点。采用对流扩散方法通过将两个运动机制解耦(即假设对流传输是瞬时的)来模拟轴向传输,并且已经开发了独立代码。通过将此代码与FRAPCON-3一起使用,可以对轴向混合的潜在影响进行前瞻性计算。结果表明,在特定但可行的条件下,“快速轴向混合”的假设可能导致长时间低估温度。考虑到燃料棒热状态与裂变气体释放到间隙之间的耦合,燃料性能代码的预测可能会非保守地偏离。这项工作是在CSN-CIEMAT关于“高燃耗时的核燃料的热机械行为”协议中进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号