首页> 外文会议>International Conference on Carbon Dioxide Utilization; 20050620-23; Oslo(NO) >Global challenges and strategies for control, conversion and Utilization of CO_2 for sustainable development involving energy, catalysis, adsorption and chemical processing
【24h】

Global challenges and strategies for control, conversion and Utilization of CO_2 for sustainable development involving energy, catalysis, adsorption and chemical processing

机译:控制,转化和利用CO_2促进能源,催化,吸附和化学加工等可持续发展的全球挑战和战略

获取原文
获取原文并翻译 | 示例

摘要

Utilization of carbon dioxide (CO_2) has become an important global issue due to the significant and continuous rise in atmospheric CO_2 concentrations, accelerated growth in the consumption of carbon-based energy worldwide, depletion of carbon-based energy resources, and low efficiency in current energy systems. The barriers for CO_2 utilization include: (1) costs of CO_2 capture, separation, purification, and transportation to user site; (2) energy requirements of CO_2 chemical conversion (plus source and cost of co-reactants); (3) market size limitations, little investment-incentives and lack of industrial commitments for enhancing CO_2-based chemicals; and (4) the lack of socio-economical driving forces. The strategic objectives may include: (1) use CO_2 for environmentally-benign physical and chemical processing that adds value to the process; (2) use CO_2 to produce industrially useful chemicals and materials that adds value to the products; (3) use CO_2 as a beneficial fluid for processing or as a medium for energy recovery and emission reduction; and (4) use CO_2 recycling involving renewable sources of energy to conserve carbon resources for sustainable development. The approaches for enhancing CO_2 utilization may include one or more of the following: (1) for applications that do not require pure CO_2, develop effective processes for using the CO_2-concentrated flue gas from industrial plants or CO_2-rich resources without CO_2 separation; (2) for applications that need pure CO_2, develop more efficient and less-energy intensive processes for separation of CO_2 selectively without the negative impacts of co-existing gases such as H_2O, O_2, and N_2; (3) replace a hazardous or less-effective substance in existing processes with CO_2 as an alternate medium or solvent or co-reactant or a combination of them; (4) make use of CO_2 based on the unique physical properties as supercritical fluid or as either solvent or anti-solvent; (5) use CO_2 based on the unique chemical properties for CO_2 to be incorporated with high 'atom efficiency' such as carboxylation and carbonate synthesis; (6) produce useful chemicals and materials using CO_2 as a reactant or feedstock; (7) use CO_2 for energy recovery while reducing its emissions to the atmosphere by sequestration; (8) recycle CO_2 as C-source for chemicals and fuels using renewable sources of energy; and (9) convert CO_2 under either bio-chemical or geologic-formation conditions into "new fossil" energies. Several cases are discussed in more detail. The first example is til-reforming of methane versus the well-known CO_2 reforming over transition metal catalysts such as supported Ni catalysts. Using CO_2 along with H_2O and O_2 in flue gases of power plants without separation, tri-reforming is a synergetic combination of CO_2 reforming, steam reforming and partial oxidation and it can eliminate carbon deposition problem and produces syngas with desired H_2/CO ratios for industrial applications. The second example is a CO_2 "molecular basket" as CO_2-selective high-capacity adsorbent which was developed using mesoporous molecular sieve MCM-41 and polyethylenimine (PEI).
机译:由于大气中CO_2浓度持续显着上升,全球碳基能源消耗加速增长,碳基能源资源枯竭以及当前效率低下,二氧化碳(CO_2)的使用已成为一个重要的全球性问题。能源系统。 CO_2利用的障碍包括:(1)CO_2的捕获,分离,纯化和运输到用户现场的成本; (2)CO_2化学转化的能量需求(加上共反应物的来源和成本); (3)市场规模的限制,很少的投资激励措施以及缺乏工业承诺来增强基于CO_2的化学品; (4)缺乏社会经济驱动力。战略目标可能包括:(1)使用CO_2进行对环境有益的物理和化学处理,从而为流程增加价值; (2)使用CO_2生产可为产品增值的工业上有用的化学品和材料; (3)将CO_2用作加工的有益流体或用作能量回收和减少排放的介质; (4)利用涉及可再生能源的CO_2循环利用来节约碳资源以实现可持续发展。提高CO_2利用率的方法可能包括以下一种或多种:(1)对于不需要纯CO_2的应用,开发有效的工艺,以使用来自工厂或富含CO_2的资源的CO_2浓缩烟道气,而无需进行CO_2分离; (2)对于需要纯CO_2的应用,开发出更高效,耗能更少的工艺来选择性地分离CO_2,而没有诸如H_2O,O_2和N_2之类的共存气体的负面影响; (3)用CO_2作为替代介质或溶剂或共反应物或它们的组合来替代现有工艺中的危险或效果较差的物质; (4)利用基于独特物理性质的CO_2作为超临界流体或作为溶剂或反溶剂; (5)基于CO 2独特的化学性质使用CO 2以高的“原子效率”将其结合,例如羧化和碳酸盐合成; (6)使用CO_2作为反应物或原料生产有用的化学品和材料; (7)利用CO_2进行能量回收,同时通过固存减少向大气的排放; (8)使用可再生能源将CO_2用作化学和燃料的碳源; (9)在生化或地质形成条件下将CO_2转化为“新化石”能量。会详细讨论几种情况。第一个例子是甲烷的重整与在过渡金属催化剂(例如负载型Ni催化剂)上众所周知的CO_2重整。在不分离的情况下,将CO_2与H_2O和O_2一起用于发电厂的烟道气中,三重整是CO_2重整,蒸汽重整和部分氧化的协同组合,它可以消除碳沉积问题,并生产出具有工业所需H_2 / CO比的合成气应用程序。第二个示例是使用中孔分子筛MCM-41和聚乙烯亚胺(PEI)开发的作为CO_2选择性高容量吸附剂的CO_2“分子篮”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号