首页> 外文会议>International Confederation for Thermal Analysis and Calorimetry Congress 2016 >Investigation stage devolatilization during thermochemical conversion of low-grade solid fuels
【24h】

Investigation stage devolatilization during thermochemical conversion of low-grade solid fuels

机译:调查低级固体燃料热化学转化过程中的挥发度

获取原文
获取原文并翻译 | 示例

摘要

One of the key characteristics of the combustion process of solid fuels, particularly coal, is volatile substances, which, along with the proportion of fixed carbon, forms reactivity fuel. By reactivity is meant fuels their reactivity in the oxidation process. Most often, the reactivity of the fuel is expressed in the release of volatile, which characterizes the process of ignition and combustion of fuel in the boiler furnace. However, this index is arbitrary and approximate because it ignores several factors influencing the conversion process, such as composition and heat of combustion of the organic portion of the porosity of the particles, the amount and composition of the mineral fraction. Volatile defines mechanical incomplete combustion, ie combustion efficiency. Mechanical underburning is an important characteristic of the boiler and taken into account in their design calculations. For a more precise determination of the reactivity of the fuel along with volatile information used calorific value and volatile source of fuel, the composition of the organic mass, the number and composition of the mineral part. Also use the additional information on the properties of fuels - the ignition temperature, the maximum intensity of the process, information on the kinetics of one stage or another (eg, drying, volatile, burning coke and others). The above figures are reactive properties of the fuel and form its reactivity. Thus, the reactivity of the fuel is the aggregate indicator of the reaction process of determining the properties of the fuel thermochemical conversion. For efficient processing of the fuel, and also for the mathematical modeling is necessary to study all the stages of heterogeneous combustion, including the step of devolatilization various solid fuels. A common way to study the mechanism and kinetics of heterogeneous processes are the methods of physical and chemical analysis, including thermal analysis and surface analysis. The condition for the use of thermal analysis is that sometime after the start of heating there is a quasi-stationary state in which the heating rate of the sample is equal to the rate of heating of the environment that provides the simplest connection between the characteristics of the thermal curves with different physical and kinetic quantities. Surface analysis allows to determine the magnitude of the surface area required for modeling the kinetics of heterophase transformations since the number of adsorption sites defines a "concentration" of one of the reactants -fuels, knowledge of surface areas into account the influence of factors on the surface speed of the process in the kinetic (the most promising) modes of processing fuels. Based on the above, the aim of this work is the kinetic analysis of the stage of release of volatile coal gasification. This will vary about the size of the fuel particles. This analysis will be carried out, using a complex thermal analysis instrument (STA 449 F1, QMS 403 C, Pulse TA). To achieve this goal the following tasks: 1. Determine the probable mechanism of formation of gaseous components on the stage devolatilization. 2. To determine the kinetic coefficients of education of the individual components of the gas phase (CO_2, CH_4, H_2, H_2O, CO, etc.). 3. Determine the surface area of ??the test fuel. The results of thermal analysis and surface analysis be used in thermodynamics and kinetic modeling of the gasifier fluidized bed. This work was carried out at the Melentiev Energy Systems Institute SB RAS and financially supported by the Russian Scientific Found (project number 16-19-10227).
机译:固体燃料(尤其是煤)燃烧过程的关键特征之一是挥发性物质,它与固定碳的比例一起形成反应性燃料。反应性是指在氧化过程中提高其反应性。大多数情况下,燃料的反应性以挥发物的释放来表示,这是锅炉锅炉中燃料着火和燃烧的过程的特征。但是,该指数是任意的并且是近似的,因为它忽略了影响转化过程的几个因素,例如颗粒孔隙率的有机部分的组成和燃烧热,矿物级分的数量和组成。挥发性定义为机械不完全燃烧,即燃烧效率。机械欠燃是锅炉的重要特征,在其设计计算中已予以考虑。为了更精确地确定燃料的反应性以及所用的挥发性信息,热值和燃料的挥发性来源,有机物质的组成,矿物部分的数量和组成。还使用有关燃料特性的附加信息-点火温度,过程的最大强度,一个或另一个阶段(例如,干燥,挥发,焦炭燃烧等)动力学的信息。上面的数字是燃料的反应性并形成其反应性。因此,燃料的反应性是确定燃料热化学转化性质的反应过程的总指标。为了有效地处理燃料,还需要进行数学建模,以研究非均质燃烧的所有阶段,包括各种固体燃料脱挥发分的步骤。研究异质过程机理和动力学的一种常用方法是物理和化学分析方法,包括热分析和表面分析。使用热分析的条件是,在加热开始后的某个时候,存在准稳态,在该状态下,样品的加热速率等于环境的加热速率,从而在加热特性之间提供了最简单的联系。具有不同物理和动力学量的热曲线。表面分析可以确定建模多相转化动力学所需的表面积大小,因为吸附位点的数量定义了一种反应物-燃料的“浓度”,表面积的知识考虑了因素对燃料的影响。在燃料的动力学(最有希望的)模式下,过程的表面速度。基于上述,这项工作的目的是对挥发性煤气化释放阶段的动力学分析。这将随燃料颗粒的大小而变化。将使用复杂的热分析仪器(STA 449 F1,QMS 403 C,Pulse TA)进行此分析。为了实现此目标,需要完成以下任务:1.确定脱挥发分阶段气态组分形成的可能机理。 2.确定气相各个成分(CO_2,CH_4,H_2,H_2O,CO等)的教育动力学系数。 3.确定被测燃料的表面积。热分析和表面分析的结果可用于气化炉流化床的热力学和动力学建模。这项工作是在Melentiev能源系统研究所SB RAS进行的,并得到了俄罗斯科学基金会的资助(项目编号16-19-10227)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号