首页> 外文会议>International conference on the physics of semiconductors;ICPS >Supercritical nondissipative currents in quantum Hallsystems
【24h】

Supercritical nondissipative currents in quantum Hallsystems

机译:量子霍尔系统中的超临界非耗散电流

获取原文

摘要

We have studied the electric response of quantum Hall systems tosub- and supercritical nanosecond voltage pulses. We found that thebreakdown of the QHE is suppressed on time scales up to a few nanoseconds,even for supercritical voltages and currents being more than 3 times higherthan the dc-breakdown value. The electric response of the sample is mainlydetermined by processes during the pulse, but not by the average current.Further, there is no accumulative effect of dissipation during the pulse pauseslonger than a few nanoseconds. Thus, the relaxation times trel from thedissipative to the QH state are shorter than a few ns and of the same order asthe excitation times texc. Applying a drift model, we estimate inelasticscattering lengths which are in the micrometer range and conclude that inter-Landau-level transitions, enforced by local impurity potential fluctuations,can explain these time and length scales. A comparison of the data obtained atsamples with Hall and Corbino geometry allows us to discuss the role of bulkand edge effects near the breakdown of the QHE. At some Corbino devicesthe critical pulse width tpc was found to change nonlinearly and stepwise withthe average VSD values in Corbino devices at filling factor 2. We attribute thisbehaviour to an increasing number of discrete current filaments.[73.43.-f, 73.43.Jn, 73.20.Jc]
机译:我们已经研究了量子霍尔系统对亚临界和超临界纳秒电压脉冲的电响应。我们发现,即使在超临界电压和电流比直流击穿值高3倍以上的情况下,QHE的击穿也能在几纳秒的时间内得到抑制。样品的电响应主要由脉冲期间的过程决定,而不是由平均电流决定。此外,在脉冲暂停时间超过几纳秒时,没有累积的耗散效应。因此,从耗散状态到QH状态的弛豫时间trel短于几ns,并且与激发时间texc处于同一数量级。应用漂移模型,我们估计了在微米范围内的非弹性散射长度,并得出结论,由局部杂质势能波动引起的兰道间水平跃迁可以解释这些时间和长度尺度。将样品获得的数据与Hall和Corbino几何形状进行比较,我们可以讨论在QHE分解附近的体积和边缘效应的作用。在某些Corbino设备上,发现临界脉冲宽度tpc在填充系数为2时随Corbino设备中的平均VSD值呈非线性和逐步变化。我们将此行为归因于离散电流灯丝数量的增加。[73.43.-f,73.43.Jn,73.20 .Jc]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号