【24h】

Beyond Electrochemical Analysis: 2D, 3D, and 4D Microscopy of LIBs

机译:超越电化学分析:LIB的2D,3D和4D显微镜

获取原文

摘要

Li-ion batteries (LIBs) represent an important pathway for the development of many modern devices, ranging from portable electronics to hybrid- and fully-electric vehicles. In these consumer applications, it is important to understand how the batteries perform over time, how they respond to stressful conditions (such as elevated temperatures or impact conditions), and what happens when the batteries fail. The motivations for these studies range from increasing electrochemical efficiencies and extending the range of electric vehicle batteries, to ensuring safe, reliable operation of the battery products. In spite of these desires, there remains a relatively poor understanding of what dictates battery performance and how the batteries ultimately fail. To begin answering the key questions governing battery operation and evolution, a growing number of researchers are turning toward microscopy to complement their existing electrochemical analysis routines. Recent research has demonstrated the power of imaging for characterizing the tiny features of a porous separator, the cracks that form and/or close within cathode layers of a commercial 18650, and have even permitted reverse-engineering of cell designs and chemistries. From characterizations of 2D and 3D structures to 4D studies of microstructure evolution, microscopy is providing unique insight into today's battery research challenges. Here, we present the development of a multi-scale suite of microscopy instrumentation, incorporating both structural and chemical analysis routines (as shown in Figure 1). We will demonstrate how each imaging modality provides a unique view into the processes governing battery operation, evolution, and failure, spanning electrode layers, polymeric and multi-phase separators, and fully packaged, sealed products. Combining the high-resolution capabilities of scanning electron microscopy (SEM) with the non-destructive 3D volumetric imaging provided by X-ray microscopy (XRM), we will show how researchers may survey a packaged battery, locate areas of defects or contamination, and enlarge them using FIB-SEM. We will show how these techniques may be further coupled with high-resolution light microscopy and spectroscopic chemical analysis techniques, creating an integrated, multi-scale investigation platform capable of satisfying the demanding needs of battery research and characterization engineers.
机译:锂离子电池(LIB)代表了许多现代设备(从便携式电子产品到混合动力和全电动汽车)发展的重要途径。在这些消费类应用中,重要的是要了解电池随时间变化的性能,它们如何应对压力条件(例如高温或撞击条件)以及电池发生故障时会发生什么。这些研究的动机从提高电化学效率和扩大电动汽车电池的范围到确保电池产品安全可靠的运行。尽管有这些需求,但对于决定电池性能的因素以及电池最终如何失效的理解仍然相对较差。为了开始回答有关电池运行和发展的关键问题,越来越多的研究人员正在转向显微镜以补充其现有的电化学分析程序。最近的研究表明,成像技术可表征多孔隔板的微小特征,在商用18650阴极层内形成和/或闭合的裂纹,甚至可以对电池设计和化学成分进行逆向工程。从2D和3D结构的表征到微观结构演变的4D研究,显微镜技术为当今的电池研究挑战提供了独特的见识。在这里,我们介绍了一种多尺度的显微仪器套件,包括结构和化学分析程序(如图1所示)。我们将演示每种成像方式如何提供独特的视角来管理电池操作,演化和故障,跨电极层,聚合物和多相隔板以及完全包装的密封产品的过程。将扫描电子显微镜(SEM)的高分辨率功能与X射线显微镜(XRM)提供的无损3D体积成像相结合,我们将展示研究人员如何调查包装好的电池,查找缺陷或污染的区域以及使用FIB-SEM放大它们。我们将展示如何将这些技术与高分辨率光学显微镜和光谱化学分析技术进一步结合,从而创建一个能够满足电池研究和表征工程师苛刻需求的集成,多尺度研究平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号