首页> 外文会议>Instruments, methods, and missions for astrobiology XIII >Evolution of primordial planets in relation to the cosmological origin of life
【24h】

Evolution of primordial planets in relation to the cosmological origin of life

机译:原始行星与生命的宇宙起源有关的演变

获取原文
获取原文并翻译 | 示例

摘要

We explore the conditions prevailing in primordial planets in the framework of the HGD cosmologies as discussed by Gibson and Schild. The initial stages of condensation of planet-mass gas clouds is set at 300,000 yr (0.3My) following the onset of plasma instabilities when ambient temperatures were >1000K. Eventual collapse of the cloud into a solid structure, dominated by water-ice and organics takes place against the background of an expanding universe with declining ambient temperatures. Isothermal free fall collapse occurs initially via quasi equilibrium polytropes until opacity sets in due to molecule and dust formation. The contracting cooling cloud is a venue for molecule formation and the sequential condensation of solid particles, starting from mineral grains at high temperatures to ice particles at lower temperatures, Water-ice becomes thermodynamically stable between 7 and 15 My after the initial onset of collapse, and contraction to form a solid icy core begins shortly thereafter. The icy planet core, which includes a fraction of radioactive nuclides, 26A1 and 60Fe, melts through interior heating. We show, using heat conduction calculations, that the interior domains remain liquid for tens of My for 300km and 1000km objects, but not for 30 or 50km objects. Initially planets are separated by relatively short distances, measured in tens to hundreds of AU, because of the high density of the early universe. Thus exchanges of materials, organic molecules and evolving templates could readily occur providing optimal conditions for an initial origin of life. The condensation of solid molecular hydrogen as an extended outer crust takes place much later in the collapse history of the protoplanet. When the object has shrunk to several times the radius of Jupiter, the hydrogen partial pressure exceeds the saturation vapour pressure of solid hydrogen at the ambient temperature and condensation occurs.
机译:正如Gibson和Schild所讨论的,我们在HGD宇宙学的框架内探索原始行星中普遍存在的条件。当环境温度> 1000K时,等离子不稳定开始后,行星气云凝结的初始阶段定为300,000 yr(0.3My)。在宇宙不断膨胀,环境温度下降的背景下,云最终坍塌成由水冰和有机物为主的固体结构。等温自由落体塌陷最初是通过准平衡多向性而发生的,直到由于分子和尘埃的形成而变得不透明。收缩的冷却云是分子形成和固体颗粒依次凝结的场所,从高温的矿物颗粒到较低温度的冰颗粒开始,水冰在开始崩塌后在7到15 My之间保持热力学稳定,此后不久便开始收缩形成坚固的冰芯。包含少量放射性核素26A1和60Fe的冰冷行星芯通过内部加热而融化。我们使用热传导计算表明,对于300km和1000km的物体,几十My的内部区域仍然是液体,而对于30或50km的物体则不是。最初,由于早期宇宙的高密度,行星之间的距离相对较短,以数十到数百AU进行测量。因此,很容易发生材料,有机分子和不断发展的模板的交换,从而为生命的最初起源提供了最佳条件。固体分子氢的缩合作为延伸的外皮发生在原行星的坍塌历史中。当物体收缩到木星半径的几倍时,氢分压会超过环境温度下固体氢的饱和蒸气压,并且会发生冷凝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号