首页> 外文会议>Charging amp; infrastructure symposium 2018 >Temperature Gradients in Lithium-Ion Batteries Determined by In-Situ Electrothermal Impedance Spectroscopy (ETIS)
【24h】

Temperature Gradients in Lithium-Ion Batteries Determined by In-Situ Electrothermal Impedance Spectroscopy (ETIS)

机译:用原位电热阻抗谱(ETIS)确定锂离子电池的温度梯度

获取原文
获取原文并翻译 | 示例

摘要

While the surface temperature (Tsurf) of a lithium-ion cell can be determined by an external temperature sensor, the internal temperature (Tint) remains unknown. This uncertainty increases with charging/discharging rate and with cell volume. A thermal model describing the correlation between load and cell temperature becomes mandatory, but requires reliable parameter settings. The electrothermal impedance spectroscopy (ETIS) is an in-situ method, which determines the thermal impedance and delivers parameters for a thermal model. ETIS applies an excitation signal which is a sinusoidal heat flow q(t), which leads to a sinusoidal temperature response Tint(t) and Tsurf(t). From the input signal q(t) and output signal T(t) the thermal impedance can be calculated. Using a thermal model and the measured thermal impedance, the difference between internal (Tint) and surface temperature (Tsurf) can be calculated as a function of the load current. Consequently, the ETIS-Method was applied to a high energy (KOKAM 560 mAh) and to a high power (KOKAM 350 mAh) lithium-ion pouch cell. Both are made of a NCA-LCO blend cathode and a graphite anode, but differ in electrode thickness. The study shows that the thermal model sufficiently describes the thermal behavior of both commercial cell types. The parametrized model describes fairly well the thermal gradient from Tsurf to Tint and is capable to quantify the thermal gradients in lithium-ion cells. The thermal resistance Rth of the high energy pouch cell is more than doubled (2.5 K/W) comparing to the high power cell (1 K/W), thus reflecting the influence of electrode thickness to the thermal behavior of a lithium-ion cell.
机译:尽管可以通过外部温度传感器确定锂离子电池的表面温度(Tsurf),但内部温度(Tint)仍然未知。这种不确定性随着充电/放电速率以及电池容量的增加而增加。描述负载和电池温度之间关系的热模型成为强制性的,但需要可靠的参数设置。电热阻抗谱(ETIS)是一种现场方法,可确定热阻抗并为热模型提供参数。 ETIS施加的激励信号为正弦热流q(t),导致正弦温度响应Tint(t)和Tsurf(t)。根据输入信号q(t)和输出信号T(t),可以计算出热阻。使用热模型和测得的热阻抗,可以根据负载电流计算内部温度(Tint)与表面温度(Tsurf)之间的差。因此,ETIS方法应用于高能量(KOKAM 560 mAh)和高功率(KOKAM 350 mAh)锂离子袋式电池。两者均由NCA-LCO混合阴极和石墨阳极制成,但电极厚度不同。研究表明,热模型足以描述两种商业电池类型的热行为。参数化模型很好地描述了从Tsurf到Tint的热梯度,并且能够量化锂离子电池中的热梯度。与高功率电池(1 K / W)相比,高能袋式电池的热阻Rth翻了一倍(2.5 K / W),从而反映出电极厚度对锂离子电池热行为的影响。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    Karlsruhe Institute of Technology, IAM - Materials for Electrical and Electronic Engineering, Adenauerring 20b, Karlsruhe, D-76131 Germany;

    Karlsruhe Institute of Technology, IAM - Materials for Electrical and Electronic Engineering, Adenauerring 20b, Karlsruhe, D-76131 Germany;

    Karlsruhe Institute of Technology, IAM - Materials for Electrical and Electronic Engineering, Adenauerring 20b, Karlsruhe, D-76131 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号