首页> 外文会议>Charging amp; infrastructure symposium 2018 >BCRLS-EKF-Based Parameter Identification and State-of-Charge Estimation Approach of Lithium-Ion Polymer Battery in Electric Vehicles
【24h】

BCRLS-EKF-Based Parameter Identification and State-of-Charge Estimation Approach of Lithium-Ion Polymer Battery in Electric Vehicles

机译:基于BCRLS-EKF的电动汽车锂离子聚合物电池参数识别和荷电状态估计方法

获取原文
获取原文并翻译 | 示例

摘要

It is very importance for the BMS (battery management system) in electric vehicles to estimate the SOC (state of charge) of LiB (lithium-ion battery) accurately. In this paper a 3.7V/2.4Ah LiB is chosen as the research object. This paper firstly established the Thevenin battery model, and the parameters of which are determined by off-line identification method; To address the interference caused by colored noise on recursive least squares (RLS) method in on-line parameter identification, the bias compensation recursive least squares with forgetting factor (BCRLS) method is used to on-line identify the parameters of the battery, which can effectively reduce the interference of the noise on the estimation results; Finally, the extended Kalman filter (EKF) method is used to estimate the SOC. In order to improve the accuracy and efficiency of parameter identification and state estimation, BCRLS and EKF are combined to realize joint estimation of model parameters and states. In the identification process, BCRLS provides new parameters for EKF estimation, and EKF provides a relatively accurate OCV value for BCRLS. In addition, EKF estimates that the state variable U_p can be used as a reference to the BCRLS output value, and the output U_rc of the BCRLS can also be used to correct the measured value of the next cycle of EKF. That is to say, the output values of the two algorithms can be compared with the measured values to improve the identification accuracy of the next cycle. Because StroPower BMS HIL test system can well simulate the measurement error and non-ferrous noise in the practical operation of BMS, we use the BMS test system of StroPower to conduct a hardware in-loop experiment to verify the accuracy of the BCRLS-EKF algorithm in actual use, And compare the result with the result of RLS-EKF algorithm to verify the validity of the algorithm. Experimental results show: In the DST condition, the RLS-EKF algorithm estimates the absolute error of SOC is 3%, while the BCRLS-EKF algorithm estimates the absolute error of SOC is not more than 1%. Compared with RLS-EKF algorithm, the accuracy of SOC estimation is improved obviously by using BCRLS-EKF algorithm. Therefore, the SOC estimated by BCRLS-EKF algorithm based on the Thevenin model can meet the requirements of the BMS of electric vehicle.
机译:准确估算LiB(锂离子电池)的SOC(充电状态)对于电动汽车的BMS(电池管理系统)非常重要。本文选择了3.7V / 2.4Ah LiB作为研究对象。本文首先建立了戴维南电池模型,并通过离线辨识方法确定其参数。为了解决在线参数辨识中有色噪声对递归最小二乘(RLS)方法的干扰,采用了具有遗忘因子的偏置补偿递归最小二乘(BCRLS)方法对电池参数进行在线识别。可以有效减少噪声对估计结果的干扰;最后,扩展卡尔曼滤波器(EKF)方法用于估计SOC。为了提高参数识别和状态估计的准确性和效率,结合了BCRLS和EKF来实现模型参数和状态的联合估计。在识别过程中,BCRLS为EKF估计提供新参数,而EKF为BCRLS提供相对准确的OCV值。另外,EKF估计状态变量U_p可以用作BCRLS输出值的参考,并且BCRLS的输出U_rc也可以用于校正EKF下一个周期的测量值。也就是说,可以将两种算法的输出值与测量值进行比较,以提高下一个周期的识别精度。由于StroPower BMS HIL测试系统可以在BMS的实际运行中很好地模拟测量误差和有色噪声,因此我们使用StroPower的BMS测试系统进行硬件在环实验,以验证BCRLS-EKF算法的准确性。在实际使用中,将结果与RLS-EKF算法的结果进行比较,验证了算法的有效性。实验结果表明:在DST条件下,RLS-EKF算法估计SOC的绝对误差为3%,而BCRLS-EKF算法估计SOC的绝对误差不超过1%。与RLS-EKF算法相比,使用BCRLS-EKF算法可以明显提高SOC估计的准确性。因此,基于戴维南模型的BCRLS-EKF算法估计的SOC可以满足电动汽车BMS的要求。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者

    Deqiang Yang; Wang Zhifu;

  • 作者单位

    Xian Stropower Technologies Co. Ltd., Chuanghui Road, Gaoxin District, Xi'an Shaanxi, 710072 China;

    Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号