首页> 外文会议>Charging amp; infrastructure symposium 2018 >Oxidic Solid Electrolytes and Their Challenges for All-Solid-State Batteries
【24h】

Oxidic Solid Electrolytes and Their Challenges for All-Solid-State Batteries

机译:氧化性固体电解质及其对全固态电池的挑战

获取原文
获取原文并翻译 | 示例

摘要

Highly conductive, electrochemical stable solid electrolytes are essential achieving significantly higher energy and power density as common Li-ion batteries. Meanwhile solid-state electrolytes improve safety due to the absence of flammable liquids. Two of the most promising materials are the oxidic Li-ion conductors Li7La2Zr3O12 (LLZO) and Li20-A1203-Ti02-P205 (LATP). They are chemical stable in dry air and common battery electrolytes. Cubic LLZO possesses a total ionic conductivity of 3x10-4 S/cm and stability against lithium metal. LATP is the material of interest for ionic conduction in cathodes. It has a grain-core conductivity of 1x10-3 S/cm, a total conductivity of 2x10-4 S/cm and excellent compatibility with most cathode materials. Both materials sufficiently prevent self-discharge of batteries as their electronic conductivity is 6 orders of magnitude lower than their ionic conductivity. Furthermore, their transference number of ~ 1 allows fast charging of batteries. One of the key challenges is the controlled processing of LLZO and LATP enabling low interfacial resistances against other solid-state battery components. For this purpose, surface contamination of particles and components manufactured from solid electrolyte materials has to be reduced as far as possible. Regarding these aspects, latest improvements by orders of magnitude based on advanced processing of such material will be shown. Proof of sufficient Li-ion conductivity will be reported.
机译:高导电性,电化学稳定的固体电解质对于实现比普通锂离子电池更高的能量和功率密度至关重要。同时,由于不存在易燃液体,固态电解质可提高安全性。两种最有前途的材料是氧化锂离子导体Li7La2Zr3O12(LLZO)和Li20-A1203-Ti02-P205(LATP)。它们在干燥空气和普通电池电解质中化学稳定。立方LLZO具有3x10-4 S / cm的总离子电导率和对锂金属的稳定性。 LATP是阴极中离子传导的重要材料。它具有1x10-3 S / cm的晶核电导率,2x10-4 S / cm的总电导率以及与大多数阴极材料的优异相容性。两种材料都足以防止电池的自放电,因为它们的电子电导率比其离子电导率低6个数量级。此外,它们的传输数约为1,可为电池快速充电。关键挑战之一是LLZO和LATP的受控处理,使其对其他固态电池组件的界面电阻较低。为此,必须尽可能减少由固体电解质材料制成的颗粒和组分的表面污染。关于这些方面,将显示基于这种材料的先进处理而在数量级上的最新改进。将报告足够的锂离子电导率的证明。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    Technical University Braunschweig, Institute for Particle Technology, Volkmaroderstrasse 5, Braunschweig, D-38104 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany,Technical University Braunschweig, Institute of Particle Technology, Volkmaroderstrasse 5, Braunschweig, D-38104 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

    Schott AG, Hattenbergstrasse 10, Mainz, D-55122 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号