首页> 外文会议>Charging amp; infrastructure symposium 2018 >Determination of an Efficient Formation Strategy -- The Impact of Different C-Rates
【24h】

Determination of an Efficient Formation Strategy -- The Impact of Different C-Rates

机译:确定有效的编队策略-不同C级比率的影响

获取原文
获取原文并翻译 | 示例

摘要

Objective: Lithium-Ion Batteries (LIBs) are strongly relying on the electrolyte decomposition layer forming at the anode (solid electrolyte interphase, SEI) and at the cathode (cathode electrolyte interphase, CEI) [1-5]. These protective layers are formed within the first cycles (usually depicted as: formation). The formation of batteries is a costly and time intensive production step. However, very little is known about the interaction of the formation procedure and the quality of the SEI and CEI. Hence, the objective is to find the most desirable structure, composition and thickness of the decomposition layers and the most cost efficient way to build them. Methodology: To study the effects of different C-rates within the formation procedure on the cell performance lab cells and 5 Ah pouch cells were formed with different C-rates (0.05 to 2C) for 1 cycle holding a CV step at 4.2 V with C/50. Afterwards electrochemical characterization using 1C CCCV long term cycling to determine effects on the capacity fade and pulse tests to determine effects on the cell resistance were conducted. The cells were composed of a NMC111 cathode and a MCMB anode. To determine a dependency of the used electrolyte on the optimal formation procedure cells were filled either with EC:EMC 3:7 1M LiPF6 or the same electrolyte plus 2% of VC. Results: Increasing the C-rate during the formation leads to decreased formation times. With 0.2C the formation takes 10.2 h while at 2C it takes 1.8 h. It can be noticed that the CV step is increased from 0.2 to 1.8 h. From 0.05C to 0.2 C no change in cell performance can be observed. From 0.2C to 2C in both electrolytes slight tendencies to lower discharge capacities at 1C CCCV at 20℃ can be observed. Regarding the resistance of the cells for the non-VC containing electrolyte no significant difference can be found, however, the VC containing electrolyte shows a slight increase <10% for the 0.5 and 1C formation which are at the same values. For 2C the VC containing electrolyte shows a more drastic increase by >20% compared to 0.2C. To investigate the influence of the charge and the discharge current during formation on the 1C CCCV discharge capacities 2 different asymmetric formation cycles were tested. The first one with 0.2C charge and 2C discharge, the second one with 2C Charge and 0.2C discharge. Discussion: From 0.2C on a slight impact of the C-rate up to 2C on the battery performance could be determined. Significant cost reduction can be obtained, however, depending on the application and the real production costs the optimal formation C-rate might depend. In future the effect of temperature, different active materials and electrolyte additives will be investigated to finally receive a strategy for an efficient formation, which can be applied for all relevant battery materials.
机译:目的:锂离子电池(LIB)强烈依赖于在阳极(固态电解质界面,SEI)和阴极(阴极电解质界面,CEI)[1-5]上形成的电解质分解层。这些保护层在第一个循环内形成(通常表示为:形成)。电池的形成是昂贵且费时的生产步骤。但是,对于形成过程的相互作用以及SEI和CEI的质量知之甚少。因此,目的是找到最合乎需要的分解层的结构,组成和厚度以及最经济的建造它们的方法。方法:研究形成过程中不同C速率对细胞性能的影响,并以1 C的CV步长保持4.2 V的CV形成5 Ah的5 Ah袋状细胞,形成不同的C速率(0.05至2 C) / 50。然后使用1C CCCV长期循环进行电化学表征,以确定对容量衰减的影响,并进行脉冲测试以确定对电池电阻的影响。电池由NMC111阴极和MCMB阳极组成。为了确定所用电解质对最佳形成过程的依赖性,用EC:EMC 3:7 1M LiPF6或相同电解质加2%VC填充电池。结果:在成型过程中提高C速率可减少成型时间。在0.2℃下,形成需要10.2小时,而在2℃下需要1.8小时。可以注意到,CV步骤从0.2小时增加到1.8小时。从0.05C到0.2 C,无法观察到电池性能的变化。在两种电解液中,从0.2C到2C,在20℃1C CCCV时都有轻微的降低放电容量的趋势。关于电池对于不含VC的电解质的电阻,没有发现明显的差异,然而,对于含0.5和1C的相同值的含VC的电解质,显示出略微的增加<10%。对于2C,与0.2C相比,含VC的电解液表现出更大的增加> 20%。为了研究形成过程中的充电和放电电流对1C CCCV放电容量的影响,测试了2个不同的不对称形成周期。第一个带有0.2C充电和2C放电,第二个带有2C充电和0.2C放电。讨论:可以确定从0.2 C对C速率的轻微影响到2 C对电池性能的影响。可以显着降低成本,但是,取决于应用和实际生产成本,最佳地层C速率可能取决于。在未来的温度影响下,将研究不同的活性材料和电解质添加剂,以最终获得有效形成的策略,该策略可应用于所有相关的电池材料。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

    University of Munster, MEET Battery Research Center, Corrensstrasse 46, Munster, D-48149 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号