首页> 外文会议>Charging amp; infrastructure symposium 2018 >Electrochemical Performance of Cation Disordered Li Rich Li-Mn-O Material with NaCl Type Structure
【24h】

Electrochemical Performance of Cation Disordered Li Rich Li-Mn-O Material with NaCl Type Structure

机译:具有NaCl型结构的阳离子无序富Li-Mn-O材料的电化学性能

获取原文
获取原文并翻译 | 示例

摘要

A lithium rich manganese oxide (Li2Mn03) with a layered structure, is a potential candidate for next generation electrode material for Lithium ion battery due to its high theoretical capacity, 460 mAh/g. However, its low electric conductivity restricts especially initial electrochemical activity and subsequent electrochemical performance. Recently, other Li rich materials such as Li3Nb04 based materials et al, with NaCl type structure are reported to show good electrochemical properties. In this study, we found that the Li2Mn03 was improved by structural change from the layer-type to a NaCl-type in which Li and Mn are disordered. The NaCl-type Li2Mn03 was prepared by mechanically milling layer-type material. The NaCl-type material shows large reversible capacity of 320 mAh/g, respectively, while layer-type material, which is used as the precursor of the NaCl-type material, initially delivers reversible capacity of 50 mAh/g. However, its 15th discharge capacity showed about 50% of initial capacity. To improve the cycling performance, NaCl-type Li2MnO3 was combined with spinel type LiMn2O4. The composite was also prepared by mechanically milling the mixture of layer-type Li2MnO3 and LiMn2O4. The Li2MnO3-LiMn2O4 composite also adopts the NaCl type structure. The composite showed better electrochemical performance than that of NaCl-type Li2MnO3. The initial discharge capacity of the composite was 388 mAh/g, which is higher than that of NaCl-type Li2MnO3. The 15th discharge capacity of the composite showed more than 80% of initial capacity. Ex-situ XRD revealed that the lattice volume of NaCl-Li2Mn03 after 10 cycles expanded by about 25%, on the other hand, the composite expanded only 1 %, indicating that the spinel component restricted volume expansion during cycling and improved its cycling stability.
机译:具有层状结构的富锂锰氧化物(Li2Mn03)由于具有460 mAh / g的高理论容量,因此是锂离子电池下一代电极材料的潜在候选者。然而,其低电导率尤其限制了初始电化学活性和随后的电化学性能。最近,据报道具有NaCl型结构的其他富含Li的材料例如基于Li 3 NbO 4的材料等显示出良好的电化学性质。在这项研究中,我们发现通过从Li和Mn无序的层型到NaCl型的结构变化,Li2Mn03得到了改善。通过机械研磨层型材料制备NaCl型Li 2 MnO 3。 NaCl型材料分别显示出320 mAh / g的大可逆容量,而用作NaCl型材料前体的层型材料最初提供了50 mAh / g的可逆容量。但是,其第十五次放电容量显示出初始容量的约50%。为了改善循环性能,将NaCl型Li 2 MnO 3与尖晶石型LiMn 2 O 4组合。还可以通过机械研磨层状Li2MnO3和LiMn2O4的混合物来制备复合材料。 Li 2 MnO 3 -LiMn 2 O 4复合材料也采用NaCl型结构。该复合材料的电化学性能优于NaCl型Li2MnO3。复合材料的初始放电容量为388 mAh / g,高于NaCl型Li2MnO3。复合材料的第15次放电容量显示出初始容量的80%以上。异位X射线衍射表明,NaCl-Li2Mn03在10个循环后的晶格体积膨胀了约25%,而复合材料仅膨胀了1%,表明尖晶石组分限制了循环过程中的体积膨胀并改善了其循环稳定性。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    National Institute of Advanced Industrial Science and Technology (AIST), Research Institute of Electrochemical Energy, New Energy Carrier Research Group, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Research Institute of Electrochemical Energy, New Energy Carrier Research Group, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号