首页> 外文会议>Infrared imaging systems: Design, analysis, modeling, and testing XX >Sensor performance as a function of sampling (d) and optical blur (Fλ)
【24h】

Sensor performance as a function of sampling (d) and optical blur (Fλ)

机译:传感器性能与采样(d)和光学模糊(Fλ)的关系

获取原文
获取原文并翻译 | 示例

摘要

Detector sampling and optical blur are two major factors affecting Target Acquisition (TA) performance with modern EO and IR systems. In order to quantify their relative significance, we simulated five realistic LWIR and MWIR sensors from very under-sampled (detector pitch d ? diffraction blur Fλ) to well-sampled (Fλ ? d). Next, we measured their TOD (Triangle Orientation Discrimination) sensor performance curve. The results show a region that is clearly detector-limited, a region that is clearly diffraction-limited, and a transition area. For a high contrast target, threshold size T_(FPA) on the sensor focal plane can mathematically be described with a simple linear expression: T_(FPA) =1.5·d·w(d/Fλ) + 0.95· Fλ·w(Fλ/d), w being a steep weighting function between 0 and 1. Next, tacticle vehicle identification range predictions with the TOD TA model and TTP (Targeting Task Performance) model where compared to measured ranges with human observers. The TOD excellently predicts performance for both well-sampled and under-sampled sensors. While earlier TTP versions (2001, 2005) showed a pronounced difference in the relative weight of sampling and blur to range, the predictions with the newest (2008) TTP version that considers in-band aliasing are remarkably close to the TOD. In conclusion, the TOD methodology now provides a solid laboratory sensor performance test, a Monte Carlo simulation model to assess performance from sensor physics, a Target Acquisition range prediction model and a simple analytical expression to quickly predict sensor performance as a function of sampling and blur. TTP approaches TOD with respect to field performance prediction.
机译:检测器采样和光学模糊是影响现代EO和IR系统的目标采集(TA)性能的两个主要因素。为了量化它们的相对重要性,我们模拟了五个实际的LWIR和MWIR传感器,它们从非常欠采样(检测器间距d≥衍射模糊Fλ)到采样良好(Fλ≥d)。接下来,我们测量了它们的TOD(三角形定向判别)传感器性能曲线。结果显示出明显受检测器限制的区域,明显受衍射限制的区域和过渡区域。对于高对比度目标,可以使用简单的线性表达式在数学上描述传感器焦平面上的阈值大小T_(FPA):T_(FPA)= 1.5·d·w(d /Fλ)+ 0.95·Fλ·w(Fλ / d),w是介于0和1之间的陡峭加权函数。接下来,将TOD TA模型和TTP(目标任务绩效)模型用于战术车辆识别范围预测,并将其与人类观察者的测量范围进行比较。 TOD可以很好地预测采样良好和采样不足的传感器的性能。尽管早期的TTP版本(2001,2005)在采样和模糊到范围的相对权重上有明显的差异,但最新的(2008)TTP版本考虑带内混叠的预测却非常接近TOD。总之,TOD方法论现在提供了可靠的实验室传感器性能测试,用于评估传感器物理性能的蒙特卡洛模拟模型,目标采集范围预测模型以及用于根据采样和模糊快速预测传感器性能的简单分析表达式。在现场性能预测方面,TTP接近TOD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号