首页> 外文会议>Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI >Design of Sophisticated Shaped, Multilayered, and Multifunctional Nanoparticles for Combined In-Vivo Imaging and Advanced Drug Delivery
【24h】

Design of Sophisticated Shaped, Multilayered, and Multifunctional Nanoparticles for Combined In-Vivo Imaging and Advanced Drug Delivery

机译:复杂的形状,多层和多功能纳米粒子的体内成像和先进的药物输送相结合的设计。

获取原文
获取原文并翻译 | 示例

摘要

Design of multifunctional nanoparticles for multimodal in-vivo imaging and advanced targeting to diseased single cellsfor massive parallel processing nanomedicine approaches requires careful overall design, including particle shape, and amultilayered approach to match the multi-step targeting required. In addition to thermodynamically driven self-assembly,complex patterns can be produced by micro-palette and 3D printing approaches.Initial core materials can include nanomaterials that simultaneously serve as x-ray contrast agents for CAT scanimaging as well as T1 or T2 contrast agents for MRI imaging. Use of superparamagnetic iron oxide allows forconvenient magnetic manipulation during manufacturing re-positioning inside the body as well as single-cellhyperthermia therapies. To permit real-time fluorescence-image-guided surgery, fluorescence molecules can also beincluded.Advanced cell targeting can be achieved by attaching antibodies, peptides, aptamers, or other targeting molecules tothe nanoparticle in a multilayered approach mimicking the multi-step targeting required. Addition of “stealth” molecules(e.g. PEG or chitosan) to the outer surfaces of the nanoparticles can permit greatly enhanced circulation times.Nanoscale imaging of these manufactured, multifunctional nanoparticles can be achieved either directly through superresolutionmicroscopy or indirectly through single nanoparticle zeta-sizing or x-ray correlation microscopy. Since thesemultifunctional nanoparticles are best analyzed by technologies permitting analysis in aqueous environments, superresolutionmicroscopy is, in most cases, the preferred method.This review paper will discuss the importance of specific design criteria as well as advantages and disadvantages ofeach approach. The overall design required a system engineering approach to the problem.
机译:设计用于多模式体内成像的多功能纳米颗粒,以及针对病变单细胞的先进靶向,对于大规模并行处理纳米医学方法,需要仔细的总体设计,包括颗粒形状,以及多层方法,以匹配所需的多步靶向。除了热力学驱动的自组装之外,\ r \ n可以通过微调色板和3D打印方法生成复杂的图案。\ r \ n初始核心材料可以包括纳米材料,这些材料同时用作CAT扫描的X射线造影剂\ r \成像以及T1或T2造影剂进行MRI成像。使用超顺磁性氧化铁可以在制造过程中在体内重新定位以及单细胞高热疗法时方便地进行磁操作。为了进行实时荧光图像引导的手术,还可以\ r \ n包含荧光分子。\ r \ n可以通过将抗体,肽,适体或其他靶向分子附着到纳米颗粒中来实现高级细胞靶向。模仿所需的多步骤定位的多层方法。在纳米粒子的外表面添加“隐形”分子\ r \ n(例如PEG或壳聚糖)可以大大延长循环时间。\ r \ n这些制造的多功能纳米粒子的纳米级成像可以通过超分辨率直接实现\ r \ n显微镜或间接通过单纳米粒子zeta大小调整或x射线相关显微镜。由于这些\ r \ n多功能纳米颗粒最好通过允许在水性环境中进行分析的技术进行分析,因此在大多数情况下,超分辨率\ r \ n显微技术是首选方法。\ r \ n本文将讨论特定设计标准的重要性以及\ n \ neach方法的优缺点。总体设计需要针对该问题的系统工程方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号