首页> 外文会议>IEEE Photovoltaic Specialist Conference >Nanoscale Tomographic Charge Transport in Polycrystalline Chalcogenide Absorbers: CDTE versus CIGS
【24h】

Nanoscale Tomographic Charge Transport in Polycrystalline Chalcogenide Absorbers: CDTE versus CIGS

机译:多晶硫族化物吸收剂中的纳米级层析成像电荷传输:CDTE与CIGS

获取原文

摘要

Nanoscale charge transport is uniquely mapped in 3-dimensions for polycrystalline thin-film solar cell absorbers of cadmium telluride (CdTe) and copper indium gallium selenide (CIGS). Using a novel tomographic variation of Atomic Force Microscopy (CTAFM), we site selectively planarize photovoltaic materials while maintaining optoelectronic properties, thereby directly probing interfacial and bulk charge transport at and beneath the surface. This tomography reveals three notable differences and hence recommendations for CdTe versus CIGS. First, CIGS exhibits homogeneous charge transport in the bulk, as compared to CdTe which shows order-of-magnitude grain and grainboundary dependent performance. Grain boundary engineering approaches, such as passivation and doping, are thus proposed to be more effective for optimizing CdTe as opposed to CIGS. On the other hand, ordered defect compounds and deep acceptor states are detected between CIGS absorber and buffer (CdS) layers, emphasizing the importance of improving this interface for better CIGS efficiency. Lastly, CTAFM is found to enable site-selective comparisons of such local photovoltaic properties with grain orientations via EBSD, to directly explore and ultimately improve nanoand microscale connections between microstructure and solar cell performance.
机译:纳米级电荷传输以3维的形式唯一映射到碲化镉(CdTe)和硒化铜铟镓(CIGS)的多晶薄膜太阳能电池吸收器中。使用原子力显微镜(CTAFM)的新型断层扫描技术,我们在保持光电特性的同时选择性地平面化了光伏材料,从而直接探测了表面和表面以下的界面电荷和大量电荷传输。此断层扫描显示出三个显着差异,因此建议使用CdTe与CIGS。首先,与CdTe相比,CIGS在整体上表现出均匀的电荷传输,而CdTe显示出数量级的晶粒和晶界相关性能。因此,与CIGS相比,晶粒边界工程方法(例如钝化和掺杂)被认为对于优化CdTe更有效。另一方面,在CIGS吸收层和缓冲层(CdS)层之间检测到有序的缺陷化合物和较深的受体状态,强调了改进此界面以提高CIGS效率的重要性。最后,发现CTAFM可以通过EBSD对这些局部光伏性能与晶粒取向进行现场选择比较,从而直接探索并最终改善微观结构与太阳能电池性能之间的纳米和微米级连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号