首页> 外文会议>IEEE Antennas and Propagation Society International Symposium, 2009. APSURSI '09 >2-D angle estimation with spherical arrays for scalar fields by means of Unitary spherical ESPRIT
【24h】

2-D angle estimation with spherical arrays for scalar fields by means of Unitary spherical ESPRIT

机译:利用Unit球ESPRIT估计标量场的球面阵列二维角度

获取原文

摘要

The geometric configuration of the antenna array is of great importance for the performance of direction-of-arrival (DOA) estimation algorithms. Uniform circular arrays (UCAs) provide 360deg azimuthal coverage, thanks to their circular symmetry in the azimuth direction which is exploited by applying phase-mode excitation. Yet, the source elevation cannot be estimated with the same accuracy as the source azimuth angle. Moreover, a 180deg ambiguity typically appears in the elevation angle because the azimuth plane is often a symmetry plane for the array geometry. A spherical array, where the antenna elements are distributed over a sphere, overcomes these disadvantages. However, distributing the elements more or less uniformly over the sphere is a lot more complex than in the case of a UCA. In order to avoid spatial aliasing effects due to the limited number of antenna elements over the sphere, special strategies are required to distribute the antenna elements over a sphere such as equi-angle sampling, Gaussian sampling and nearly uniform sampling. In spherical phase-mode processing for spherical antenna arrays is proposed, which is similar to the phase-mode processing for UCAs. This processing technique, which is essentially a spherical Fourier transform of the element-space manifold, is the basis to develop an ESPRIT-based DOA estimation algorithm. For paired azimuth and elevation estimation, we propose an ESPRIT algorithm that incorporates all relevant phase modes, after transformation into beamspace, to fully exploit the spatial properties of the spherical array. The eigenvalues of a matrix directly yield the DOA estimates. The Unitary spherical ESPRIT algorithm is outlined in Section 2. The results of the simulations in Section 3 demonstrate that the algorithm is capable of estimating the DOAs with a high accuracy.
机译:天线阵列的几何结构对于到达方向(DOA)估计算法的性能非常重要。均匀的圆形阵列(UCA)可以提供360度的方位角覆盖范围,这是因为它们在方位方向上呈圆形对称性,而这种对称性是通过应用相模激励来开发的。但是,无法以与源方位角相同的精度估算源仰角。此外,由于方位平面通常是阵列几何形状的对称平面,因此通常在仰角中出现180度的歧义。球形阵列将天线元件分布在一个球体上,克服了这些缺点。但是,与UCA相比,将元素或多或少均匀地分布在球体上要复杂得多。为了避免由于球形上的天线元件数目有限而引起的空间混叠效应,需要特殊的策略来将天线元件分布在球形上,例如等角度采样,高斯采样和近乎均匀的采样。在球形天线阵列的球形相位模式处理中,提出了类似于UCA的相位模式处理。这种处理技术本质上是元素空间流形的球形傅立叶变换,是开发基于ESPRIT的DOA估计算法的基础。对于成对的方位角和仰角估计,我们提出了一种ESPRIT算法,该算法结合了所有相关的相位模式,转换为波束空间后,可以充分利用球形阵列的空间特性。矩阵的特征值直接产生DOA估计值。第2节概述了单一球面ESPRIT算法。第3节中的仿真结果表明,该算法能够高精度估计DOA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号