首页> 外文会议>HydroVision 2008 conference technical papers >Predicting Dissolved Oxygen and Nitrogen Uptake During Turbine Aeration
【24h】

Predicting Dissolved Oxygen and Nitrogen Uptake During Turbine Aeration

机译:预测涡轮曝气期间的溶解氧和氮吸收

获取原文
获取原文并翻译 | 示例

摘要

During hydropower production, stratification of the upper reservoir can result inrnexceedingly low levels of dissolved oxygen (DO) a distance below the water surface. Inrnmany sites, water from these depths enters the turbine intakes where it is transported tornthe tailwaters downstream of the plant. There, low levels of dissolved oxygen can havernan adverse effect on aquatic life and water quality. In an effort to reduce thernenvironmental impact of hydropower generation, governmental regulations are beingrnestablished which require minimum tailwater DO concentrations.rnA variety of techniques have been employed to establish the air-water mixturernnecessary for dissolved oxygen enhancement of the water exiting the turbine, includingrna) line diffusers bubbling pure oxygen into the upper reservoir; b) venting air into thernturbine; and c) spilling or utilization of tailrace weirs. In many plants, turbine venting is arnparticularly cost effective method for increasing tailrace DO levels by introducing air intornthe water passing through the turbine. There, the concentration gradient between therntwo phases causes oxygen and nitrogen in the gaseous state to dissolve into thernsurrounding water. Despite the benefits of DO enhancement, the accompanyingrnincrease in total dissolved gas (TDG) can be harmful to water quality and must bernevaluated in conjunction with the DO increase.rnRecently, the discrete bubble model (DBM) methodology was developed tornpredict mass transfer in the air-water mixture occurring within airlift aerators, the SpeecernCone, bubble-plume diffusers and turbines. While the DBM is sensitive to turbine andrnplant geometry, as well as discharge rate, the predictions are dependant on initial bubblernsize at the injection location and bubble dynamics during transit. At these early stages ofrndevelopment, correlation with test data has been solely based on average dischargernvelocity. However, complex flow patterns within the turbine, such as the part load ropernvortex, cause local velocity gradients that will influence bubble size and mass transfer.rnThese flow patterns, and the presence of admitted air, will also dictate the amount of airrnthat can be drawn into the turbine by influencing the air inlet pressure. Insight into howrnthese flow characteristics affect bubble size and air flow can be obtained throughrncorrelations based on the ratio of discharge rate Q to the rate at which peak efficiencyrnoccurs, Q_(opt), i.e., Q/Q_(opt). After establishing these relationships for distributed, central andrnperipheral aeration, the current paper presents a comprehensive calculationrnmethodology that incorporates individual turbine design and operation into air flowrnpredictions and the corresponding dissolved oxygen and nitrogen uptake within therndischarge.
机译:在水力发电期间,上部水库的分层可能导致在水面以下一定距离处溶解氧(DO)的含量极低。在许多地方,这些深度的水进入涡轮机进水口,在那里被输送到工厂下游的尾水。那里的溶解氧含量低会对水生生物和水质产生不利影响。为了减少水力发电对环境的影响,正在建立政府法规,要求最低的尾水DO浓度。rn已经采用了多种技术来建立空气-水混合物,这对于提高涡轮机出水的溶解氧含量是必要的,包括RNa管线扩散器将纯氧气鼓入上部储层; b)将空气排入涡轮机; c)尾流堰的溢出或利用。在许多工厂中,通过将空气引入流经涡轮机的水中,涡轮机排气是一种特别经济有效的方法,用于提高尾水DO含量。在那里,两个相之间的浓度梯度使气态的氧气和氮气溶解到周围的水中。尽管增加了溶解氧的益处,但总溶解气体(TDG)的随之增加可能对水质有害,必须与溶解氧的增加一起进行重新评估。rn最近,开发了离散气泡模型(DBM)方法来预测空气中的传质-空运混合气,SpeecernCone,气泡-泡沫扩散器和涡轮中出现的水混合物。虽然DBM对涡轮和植入物的几何形状以及排放速率敏感,但预测取决于注入位置的初始气泡大小和运输过程中的气泡动力学。在开发的这些早期阶段,与测试数据的相关性仅基于平均排放速度。但是,涡轮机内部的复杂流动模式(例如部分负荷绳形涡流)会导致局部速度梯度变化,从而影响气泡大小和传质。这些流动模式以及允许的空气的存在也将决定可吸入的空气量。通过影响进气压力进入涡轮机。可以基于排放速率Q与峰值效率峰值发生率Q_(opt)之比Q / Q_opt的比率通过相关性深入了解这些流动特性如何影响气泡大小和空气流量。建立了分布式,中央和外围曝气的这些关系后,本论文提出了一种综合的计算方法,该方法将单个涡轮机的设计和运行纳入空气流量预测中,并在排放物中吸收了相应的溶解氧和氮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号