【24h】

EXPERIMENTAL STUDY OF THE GAS ENTRAPMENT PROCESS IN CLOSED-END MICROCHANNELS

机译:封闭式微通道内气体截留过程的实验研究

获取原文
获取原文并翻译 | 示例

摘要

Earlier studies have shown that for cavities present on any heater surface to become active nucleation sites during boiling, they should entrap gas. The liquid penetrates the cavity due to the capillary and surface forces, but the exact physical mechanisms have not been fully quantified. The physical mechanisms of the gas entrapment process in closed-end microchannels, representing nucleation sites, are investigated in this study. Aside from the fluid properties, the width, length and depth of the cavities, as well as the static contact angle of the test liquid with the solid are considered as main parameters that influence the gas entrapment process. Test pieces consisted of micromachined silicon dices with glass bonded on top. Widths of 50, 30, 15 and 5μm were chosen based on size distribution probability. The mouth angle was 90° in all cases. Test pieces were held horizontally under a microscope equipped with a CCD camera. A drop of liquid was placed at the entrance of the microchannel and capillary and surface forces drive the liquid into the microchannel. Experiments show two main filling behaviors: (1) A uniform meniscus forms at the entrance and moves inwards, (2) Two menisci: one at the entrance and the other at the closed end of the microchannel. In some cases droplet formation at the walls was observed. A single meniscus typically forms for higher contact angles, while two menisci form for lower contact angles. In all cases, after a sufficient time interval (hours to days) the microchannel was completely flooded. In general, for a given depth, wider microchannels take longer to fill. Surface cleanliness and fabrication process also play a role in modifying the contact angle and hence the time taken to fill the microchannel. A comparison of the interface advancement in the microchannel with a simple mass diffusion model shows reasonable agreement.
机译:较早的研究表明,要使任何加热器表面上存在的空腔在沸腾过程中成为活跃的成核位置,它们应截留气体。由于毛细管力和表面力的作用,液体会渗入空腔,但是确切的物理机理尚未完全量化。在这项研究中,研究了代表成核位置的封闭式微通道中气体截留过程的物理机理。除流体性质外,空腔的宽度,长度和深度以及测试液体与固体的静态接触角也被视为影响气体截留过程的主要参数。试件由微加工的硅片组成,玻璃片粘合在顶部。根据尺寸分布概率选择50、30、15和5μm的宽度。在所有情况下,嘴角均为90°。将测试片在配备有CCD相机的显微镜下水平固定。在微通道的入口处放一滴液体,毛细管和表面力将液体驱动到微通道中。实验显示了两种主要的填充行为:(1)弯液面在入口处形成并向内移动;(2)两种弯液面:一种在入口,另一种在微通道的封闭端。在某些情况下,观察到在壁上形成液滴。一个弯月面通常形成较大的接触角,而两个弯月面形成较小的接触角。在所有情况下,经过足够的时间间隔(数小时至数天)后,微通道完全被淹没。通常,对于给定的深度,较宽的微通道需要更长的时间才能填充。表面清洁度和制造工艺在改变接触角以及填充微通道所需的时间方面也起着作用。用简单的质量扩散模型比较微通道中界面的进展显示出合理的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号