首页> 外文会议>Gettering and defect engineering in semiconductor technology XVI >Recent Progress of Crystal Growth Technology for Multi-crystalline Silicon Solar Ingot
【24h】

Recent Progress of Crystal Growth Technology for Multi-crystalline Silicon Solar Ingot

机译:多晶硅太阳晶锭晶体生长技术的最新进展

获取原文
获取原文并翻译 | 示例

摘要

In recent years, silicon solar cells continue to remain the main stream in photovoltaic (PV) industry, particularly of made from multi-crystalline silicon (mc-Si). The progress of crystal growth technology for mc-Si ingot using directional solidification (DS) is particularly significant. With the breakthrough of the so-called high-performance (HP) mc-Si technology in 2011, the mc-Si solar cell efficiency had increased from 16.6% in 2011 to 18 % or beyond in 2013. Nowadays, HP mc-Si, solar cells from a normal screen-printing aluminum back surface field (Al-BSF) production line could easily reach 18.3%. With the passivated emitter and rear cell (PERC) structure using PECVD alumina passivation, an average efficiency of over 19.2% could also be obtained. The emerging of HP mc-Si almost blocked the development of mono-like technology in 2012, and pushed p-type mono-Si cells to higher efficiency by using advanced technology. Unlike the conventional way of having large grains and electrically-inactive twin boundaries, the growth of HP mc-Si is from small and uniform grains having more random GBs. The grains developed from such grain structures significantly relaxes the thermal stress and suppresses the massive generation and propagation of dislocation clusters. Currently, most of commercial mc-Si ingots are grown by this concept, which could be implemented by seeded with small silicon particles or using nucleation agent coatings. The seeded growth has been well adopted in industry. However, the melting control of the seed layer and the thick red zone induced remain key issues in mass production. Several methods have been considered to resolve these issues with some success. The use of nucleation agent layers is a simpler approach, but the control of initial grain structures remains challenging.
机译:近年来,硅太阳能电池继续成为光伏(PV)工业的主流,特别是由多晶硅(mc-Si)制成的硅太阳能电池。使用定向凝固(DS)的mc-Si锭晶体生长技术的进步特别重要。随着2011年所谓的高性能(hp)mc-Si技术的突破,mc-Si太阳能电池效率从2011年的16.6%提高到2013年的18%甚至更高。如今,HP mc-Si,从普通的丝网印刷铝背面场(Al-BSF)生产线生产的太阳能电池很容易达到18.3%。通过使用PECVD氧化铝钝化的钝化发射极和后单元(PERC)结构,平均效率也可以达到19.2%以上。 HP mc-Si的出现在2012年几乎阻止了类单晶技术的发展,并通过使用先进技术将p型单晶硅电池推向了更高的效率。与具有大晶粒和电惰性双晶界的常规方法不同,HP mc-Si的生长来自具有更随机GB的小且均匀的晶粒。由这种晶粒结构形成的晶粒极大地缓解了热应力,并抑制了位错簇的大量产生和传播。当前,大多数商业化的mc-Si锭都是通过这种概念来生长的,可以通过在其上撒上小的硅颗粒或使用成核剂涂层来实施。种子的增长已被工业界广泛采用。但是,种子层的熔化控制和厚厚的红色区域仍是批量生产中的关键问题。已经考虑了几种方法来成功解决这些问题。成核剂层的使用是较简单的方法,但是控制初始晶粒结构仍然具有挑战性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号