首页> 外文会议>Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena >A systematic study of the role of stacking fault energy (SFE) on shock-hardening in Cu and Cu-Al alloys
【24h】

A systematic study of the role of stacking fault energy (SFE) on shock-hardening in Cu and Cu-Al alloys

机译:堆垛层错能(SFE)对Cu和Cu-Al合金的冲击硬化的作用的系统研究

获取原文
获取原文并翻译 | 示例

摘要

The role of stacking fault energy (SFE) in shock-hardening was systematically studied in Cu (SFE ~ 78 ergs/cm~2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4 and 6 wt.% Al with SFE ~ 78, 25, 13, and 6 ergs/cm~2, respectively). The materials were deformed under quasi-static compression, before and after a shock-prestrain to pressures of 10 or 35 GPa. Shock hardening was found to be higher at the higher shock-pressure though the hardening decreases with a decrease in SFE at both shock pressures. In the literature, shock-hardening has been qualitatively attributed to deformation twinning and a high dislocation density. In the present work, the strengthening contribution of deformation twins was determined using a modified Hall-Petch equation (using inter-twin spacing as an 'effective' grain size). The calculated deformation twin strengthening suggests that the contribution of deformation twins to the post-shock strength increases with decreasing SFE which, in turn, implies that the dislocation contribution to the post-shock strength concurrently decreases. The dislocation density in shock-deformed materials was indirectly estimated using stored energy measurements via a differential scanning calorimeter (DSC). The DSC data indicates a lower stored dislocation density in the lower SFE alloys which could explain the reduced shock-strengthening in the lower SFE materials. This lower dislocation density in the shock-deformed low SFE materials can be attributed to twinning being the preferred mode of deformation and to the inability of the material to generate and store additional dislocation line-length due to an increased Bauschinger effect with more planar glide upon decreasing SFE.
机译:在Cu(SFE〜78 ergs / cm〜2)和一系列Cu-Al固溶合金(0.2、2、4和6 wt。%)中系统研究了堆垛层错能(SFE)在冲击硬化中的作用。铝的SFE分别为78、25、13和6 ergs / cm〜2。在准静态压缩之前和之后,材料在准静态压缩下变形至10或35 GPa的压力。发现在较高的冲击压力下,尽管随着两种冲击压力下SFE的降低,硬化程度都降低,但冲击硬化程度更高。在文献中,定性将冲击硬化归因于形变孪晶和高位错密度。在目前的工作中,变形双晶的强化作用是使用修正的霍尔-帕奇方程式确定的(使用双晶间距作为“有效”晶粒尺寸)。计算得出的变形双胞胎强化表明,随着SFE的降低,变形双胞胎对冲击后强度的贡献增加,这反过来意味着位错对冲击后强度的贡献同时减小。冲击变形材料中的位错密度通过差示扫描量热仪(DSC)使用存储的能量测量值间接估算。 DSC数据表明较低的SFE合金中较低的存储位错密度,这可以解释较低的SFE材料中的减震强度降低。冲击变形后的低SFE材料中较低的位错密度可归因于孪晶是首选的变形方式,并且归因于由于增加的鲍辛格效应以及更平坦的滑行,材料无法产生和存储额外的位错线长。降低SFE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号